Ancon®

Low Thermal Conductivity Wall Ties
Helping to deliver sustainable, energy-efficient buildings
Leviat is a world leader in connecting, fixing, lifting and anchoring technology. From the build of new schools, hospitals, homes and infrastructure, to the repair and maintenance of heritage structures, our engineering skills are making a difference around the world.

We provide technical design assistance at every stage of a project, from initial planning to installation and beyond. Our technical support services range from simple product selection through to the development of a fully customised project-specific design solution.

Every promise we make locally, has the commitment and dedication of our global team behind it. We employ almost 3,000 people at 60 locations across North America, Europe and Asia-Pacific, providing an agile and responsive service worldwide.

Leviat, a CRH company, is part of the world’s leading building materials business.

We imagine, model and make engineered products and innovative construction solutions that help turn architectural visions into reality and enable our construction partners to build better, safer, stronger and faster.
Industrial Technology
Mounting channels, pipe clamps and other versatile framing systems that provide safe fixing in a wide range of industrial applications.

Formwork & Site Accessories
Non-structural accessories that complement our engineered solutions and help keep your construction environment operating safely and efficiently, including moulds for casting standard and special concrete elements and construction essentials such as reinforcing bar spacers.

Anchoring & Fixing
Systems for fixing secondary fixtures to concrete, including anchor channels, bolts and inserts; also tension rod systems for roofs and canopies.

Lifting & Bracing
Systems for the safe and efficient transportation, lifting and temporary bracing of cast concrete elements and tilt-up panels before permanent structural connections are made.

Façade Support & Restraint
Systems for the safe and thermally-efficient fixing of the external building envelope, including brick and natural stone, insulated sandwich panels, curtain walling and suspended concrete façades, and also the repair and strengthening of existing masonry installations.

Structural Connections
Systems to form robust, efficient connections, and continuity of concrete reinforcement as necessary, between walls, slabs, columns, beams and balconies, providing structural integrity as well as enhanced thermal and acoustic performance.

Other areas of expertise:
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Natural Stone Façade Systems
- Cavity Trays
- Sandwich Panel anchor
- Suspended concrete façade
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Reinforcement
- Masonry Repair
- Masonry Support Systems
- Windposts
- Lintels
- Brick Slip Systems
- Wall Ties & Restraints
- Masonry Re
Low Thermal Conductivity Wall Ties

Contents
- Ancon Teplo Basalt Fibre Cavity Wall Ties
 Page 6
- Ancon Stainless Steel Cavity Wall Ties
 Page 6
- Ancon Teplo-BFL Basalt Fibre Frame Cramps
 Page 7
- U-value Calculations for Cavity Ties & Frame Cramps
 Page 8
- Ancon Teplo-Channel Basalt Fibre Wall Ties
 Page 9
- U-value Calculations for Teplo-Channel Ties
 Page 10

Helping to deliver sustainable, energy-efficient buildings

Wall ties are an essential element in the strength and stability of a cavity wall, but by crossing the insulated cavity they act as a thermal bridge, providing a path for heat to escape from the building. Generally speaking, the wider the cavity, the more substantial the wall tie needs to be and the greater the effect the tie will then have on the thermal efficiency (U-value) of the wall.

The challenge for the wall tie industry was to reduce the thermal conductivity of its products whilst continuing to meet the structural performance requirements of wide cavity construction. Leviat has met this challenge with its innovative range of Ancon Low Thermal Conductivity Wall Ties.

Ancon Low Thermal Conductivity Wall Ties suit cavities up to 450mm and minimise heat loss through thermal bridging, improving the energy efficiency of a masonry cavity wall. Ideal for today’s super-insulated building envelopes, they are suitable for both new-build and retrofit.
Ancon Teplo-BF Wall Ties
Ancon Teplo Basalt Fibre Cavity Wall Ties
Ancon Teplo Wall Ties comprise pultruded basalt fibres set in a resin matrix which offers a thermal conductivity of just 0.7W/mK. The thermal efficiency of this innovative material means these ties are excluded from U-value calculations to BS EN ISO 6946, minimising insulation thickness and wall footprint. The unique ribbed shank of these ties provides an effective moisture drip.

Plain-ended Ancon Teplo-R ties, inspired by the original basalt fibre wall tie, are ideal for resin-fixed remedial/retrofit projects.

The Ancon Teplo-BF new-build wall tie, with its moulded safety ends, offers improved buildability and mortar bond strength, making it more user-friendly and suitable even in slow drying lime mortars.

The Ancon Teplo-BFR features a plain end for resin anchoring into an existing structure and a moulded safety end for building into a new bed joint.

The range has been independently tested and is BBA approved; a British Board of Agrément certificate is available to download online.

Ancon Stainless Steel Cavity Wall Ties
Ancon Stainless Steel Wall Ties are value-engineered to provide high performance at a competitive price. The effect that the slender high tensile wire wall ties have on heat transfer is negligible and so, like the Teplo range, they are generally excluded from U-value calculations to BS EN ISO 6946.

For cavities from 50mm to 450mm

Ancon Teplo-BF1 (Type 1)	Lengths available: 200, 225, 250, 275mm
Ancon Teplo-BF2 (Type 2)	Lengths available: 200, 225, 250, 275, 300, 325, 350, 375, 400, 425mm
Ancon Teplo-BF3 (Type 3)	Lengths available: 450, 500, 525mm
Ancon Teplo-BF4 (Type 4)	Lengths available: 200, 225, 250, 550, 575mm
Ancon Teplo-BFR (Tie type dependent on resin-end/substrate)	Lengths available: 210 - 585mm
Ancon Teplo-R (Tie type dependent on resin-end)	Lengths available: 215 - 590mm

For cavities from 50mm to 175mm

Ancon ST1 (Type 1)	Lengths available: 200, 225, 250, 275, 300, 325, 350mm
Ancon Staifix RT2 (Type 2)	Lengths available: 200, 225, 250, 275mm
Ancon Staifix HRT4 (Type 4)	Lengths available: 200, 225, 250, 275, 300mm

Suitable for use in internal separating walls to Approved Document E

Lambda value (W/mK) and cross-sectional areas are given overleaf to aid U-value calculations.

Product Marking
Ancon Stainless Steel Wall Ties are UKCA & CE marked to BS EN 845-1 in accordance with the Construction Products Regulation. Basalt fibre Ancon Teplo Wall Ties are outside the scope of UKCA & CE marking.
Ancon Teplo-BFL-Basalt Fibre Frame Cramps
The Ancon Teplo-BFL-Tie is ideal where a low thermal conductivity restraint fixing is required between a masonry outer leaf and an in-situ structure. It offers the same thermal benefits as a Teplo-BF cavity wall tie, with an additional stainless steel upstand which is mechanically fixed to one end of the tie to allow for a secondary fixing. The range has been independently tested and is BBA approved; a British Board of Agrément certificate is available to download online.

For cavities from 76mm-400mm
Chi values (W/K) are given overleaf

Suitable Fixings
Masonry: Plug and Screw
Concrete: Plug and Screw, Expansion Bolt (M6)
Steel: Set screws (M6), Self-Drilling Screws (SDTSS-38-5PT)
Timber: Countersunk Wood Screw (5mm x 30mm)

Example Wall Profiles

Project References
Ancon’s low thermal conductivity wall ties have been used on numerous exemplary low energy construction projects, including certified zero carbon and PassivHaus developments. Visit www.ancon.co.uk or contact us for further information.
Information for U-value Calculations

For the accurate calculation of a wall’s U-value, it is important to use the correct information for the wall ties, rather than allowing a program to apply a default value as this will over-estimate the effect of an Ancon Wall Tie. BS EN ISO 6946 permits the corrections due to wall ties (ΔU_f) and air gaps between insulation boards etc to be omitted if the corrections amount to less than 3% of the uncorrected U-value of the wall.

Ancon Teplo Basalt Fibre Wall Ties

Ancon Teplo-BF, Teplo-BFR and Teplo-R have a thermal conductivity of less than 1.0W/mK and so are excluded from U-value calculations to EN ISO 6946, irrespective of tie diameter.

Ancon Stainless Steel Wall Ties

The thermal conductivity and cross-sectional areas of Ancon’s stainless steel wall ties are shown below for use in U-value calculation programs.

<table>
<thead>
<tr>
<th>Tie Reference</th>
<th>Tie Type</th>
<th>Tie Length (mm)</th>
<th>Cavity Range (mm)</th>
<th>Cross-Sectional Area (mm²)</th>
<th>Thermal Conductivity (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRT4-200</td>
<td>4</td>
<td>200</td>
<td>50 - 75</td>
<td>3.5</td>
<td>17.0</td>
</tr>
<tr>
<td>HRT4-225</td>
<td>4</td>
<td>225</td>
<td>76 - 100</td>
<td>4.2</td>
<td>17.0</td>
</tr>
<tr>
<td>HRT4-250</td>
<td>4</td>
<td>250</td>
<td>101 - 125</td>
<td>6.2</td>
<td>17.0</td>
</tr>
<tr>
<td>HRT4-275</td>
<td>4</td>
<td>275</td>
<td>126 - 150</td>
<td>6.2</td>
<td>17.0</td>
</tr>
<tr>
<td>HRT4-300</td>
<td>4</td>
<td>300</td>
<td>151 - 175</td>
<td>7.6</td>
<td>17.0</td>
</tr>
<tr>
<td>RT2-200</td>
<td>2</td>
<td>200</td>
<td>50 - 75</td>
<td>7.5</td>
<td>17.0</td>
</tr>
<tr>
<td>RT2-225</td>
<td>2</td>
<td>225</td>
<td>76 - 100</td>
<td>7.5</td>
<td>17.0</td>
</tr>
<tr>
<td>RT2-250</td>
<td>2</td>
<td>250</td>
<td>101 - 125</td>
<td>8.6</td>
<td>17.0</td>
</tr>
<tr>
<td>RT2-275</td>
<td>2</td>
<td>275</td>
<td>126 - 150</td>
<td>10.2</td>
<td>17.0</td>
</tr>
<tr>
<td>ST1-200</td>
<td>1</td>
<td>200</td>
<td>50 - 75</td>
<td>19.5</td>
<td>17.0</td>
</tr>
<tr>
<td>ST1-225</td>
<td>1</td>
<td>225</td>
<td>76 - 100</td>
<td>19.5</td>
<td>17.0</td>
</tr>
<tr>
<td>ST1-250</td>
<td>1</td>
<td>250</td>
<td>101 - 125</td>
<td>19.5</td>
<td>17.0</td>
</tr>
<tr>
<td>ST1-275</td>
<td>1</td>
<td>275</td>
<td>126 - 150</td>
<td>23.4</td>
<td>17.0</td>
</tr>
<tr>
<td>ST1-300</td>
<td>1</td>
<td>300</td>
<td>151 - 175</td>
<td>23.4</td>
<td>17.0</td>
</tr>
<tr>
<td>ST1-325</td>
<td>1</td>
<td>325</td>
<td>176 - 200</td>
<td>23.4</td>
<td>17.0</td>
</tr>
<tr>
<td>ST1-350</td>
<td>1</td>
<td>350</td>
<td>201 - 225</td>
<td>23.4</td>
<td>17.0</td>
</tr>
</tbody>
</table>

Ancon Teplo-BFL-Tie

The Ancon Teplo-BFL-Tie with a stainless steel upstand has been thermally modelled by a third party expert, allowing us to provide accurate Chi values for each product length. To understand the effect of these wall ties in a square metre, the Chi value (W/K) is multiplied by the number of wall ties. The exceptional thermal efficiency of the Ancon Teplo range is such that it is unlikely ever to be taken into account in U-value calculations as a thermal bridge.

<table>
<thead>
<tr>
<th>Tie Reference</th>
<th>Tie Type</th>
<th>Tie Length (mm)</th>
<th>Cavity Range (mm)</th>
<th>Chi value (W/K)</th>
<th>ΔU_f 2.5 ties/m² (W/m²K)</th>
<th>ΔU_f 4.4 ties/m² (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teplo-BFL-5-155</td>
<td>3 & 6</td>
<td>155</td>
<td>76 - 100</td>
<td>0.000370</td>
<td>0.00093</td>
<td>0.00163</td>
</tr>
<tr>
<td>Teplo-BFL-5-180</td>
<td>3 & 6</td>
<td>180</td>
<td>101 - 125</td>
<td>0.000300</td>
<td>0.00075</td>
<td>0.00132</td>
</tr>
<tr>
<td>Teplo-BFL-5-205</td>
<td>3 & 6</td>
<td>205</td>
<td>126 - 150</td>
<td>0.000250</td>
<td>0.00063</td>
<td>0.00110</td>
</tr>
<tr>
<td>Teplo-BFL-5-230</td>
<td>3 & 6</td>
<td>230</td>
<td>151 - 175</td>
<td>0.000200</td>
<td>0.00050</td>
<td>0.00088</td>
</tr>
<tr>
<td>Teplo-BFL-5-255</td>
<td>3 & 6</td>
<td>255</td>
<td>176 - 200</td>
<td>0.000165</td>
<td>0.00041</td>
<td>0.00073</td>
</tr>
<tr>
<td>Teplo-BFL-7-155</td>
<td>2</td>
<td>155</td>
<td>76 - 100</td>
<td>0.000570</td>
<td>0.00143</td>
<td>N/A not Type 6</td>
</tr>
<tr>
<td>Teplo-BFL-7-180</td>
<td>2</td>
<td>180</td>
<td>101 - 125</td>
<td>0.000450</td>
<td>0.00112</td>
<td>N/A not Type 6</td>
</tr>
<tr>
<td>Teplo-BFL-7-205</td>
<td>2</td>
<td>205</td>
<td>126 - 150</td>
<td>0.000360</td>
<td>0.00090</td>
<td>N/A not Type 6</td>
</tr>
<tr>
<td>Teplo-BFL-7-230</td>
<td>2</td>
<td>230</td>
<td>151 - 175</td>
<td>0.000290</td>
<td>0.00073</td>
<td>N/A not Type 6</td>
</tr>
<tr>
<td>Teplo-BFL-7-255</td>
<td>2</td>
<td>255</td>
<td>176 - 200</td>
<td>0.000250</td>
<td>0.00082</td>
<td>N/A not Type 6</td>
</tr>
<tr>
<td>Teplo-BFL-7-280</td>
<td>2 & 6</td>
<td>280</td>
<td>201 - 225</td>
<td>0.000225</td>
<td>0.00056</td>
<td>0.00099</td>
</tr>
<tr>
<td>Teplo-BFL-7-305</td>
<td>2 & 6</td>
<td>305</td>
<td>226 - 250</td>
<td>0.000200</td>
<td>0.00050</td>
<td>0.00088</td>
</tr>
<tr>
<td>Teplo-BFL-7-330</td>
<td>2 & 6</td>
<td>330</td>
<td>251 - 275</td>
<td>0.000175</td>
<td>0.00044</td>
<td>0.00077</td>
</tr>
<tr>
<td>Teplo-BFL-7-355</td>
<td>2 & 6</td>
<td>355</td>
<td>276 - 300</td>
<td>0.000160</td>
<td>0.00040</td>
<td>0.00070</td>
</tr>
<tr>
<td>Teplo-BFL-7-380</td>
<td>3 & 6</td>
<td>380</td>
<td>301 - 325</td>
<td>0.000145</td>
<td>0.00036</td>
<td>0.00064</td>
</tr>
<tr>
<td>Teplo-BFL-7-405</td>
<td>3 & 6</td>
<td>405</td>
<td>326 - 350</td>
<td>0.000135</td>
<td>0.00034</td>
<td>0.00059</td>
</tr>
<tr>
<td>Teplo-BFL-7-430</td>
<td>3 & 6</td>
<td>430</td>
<td>351 - 375</td>
<td>0.000120</td>
<td>0.00030</td>
<td>0.00053</td>
</tr>
<tr>
<td>Teplo-BFL-7-455</td>
<td>3 & 6</td>
<td>455</td>
<td>376 - 400</td>
<td>0.000110</td>
<td>0.00027</td>
<td>0.00048</td>
</tr>
</tbody>
</table>

Wall Tie Types

Wall ties are classified by the Types given in PD6697 (Types 1 to 4) and, specifically for timber frame construction, BS5268-6.1:1996 (Types 5 to 7). These documents should be consulted for complete information on wall tie use, such as altitude and wind speed restrictions, however, generally speaking, Type 1 ties are suitable for buildings of any height, Type 2 and Type 3 ties are suitable for buildings up to 15 metres, Type 4 ties are suitable for houses up to 10 metres and Type 6 ties are suitable for timber frame developments up to 15 metres.

Wall Tie Spacing

Wall Tie Types 1 to 4 should be installed at a standard spacing of 2.5 per square metre (900mm horizontal x 450mm vertical centres). Decreasing the centres can increase the performance e.g. Type 3 to Type 2. Contact Levat for details. Type 6 timber-to-masonry wall ties should be installed at a minimum of 4.4 per square metre.
Ancon Teplo-Channel Basalt Fibre Wall Ties

The Ancon Teplo-Channel Tie range uses the same innovative combination of basalt fibres set in a resin matrix to provide a low thermal conductivity wall tie for use with our popular Ancon Omega 21/18, 25/14 and 28/15 channel profiles. These channel ties have a profiled stainless steel head at one end, shaped to suit each individual channel and mechanically fixed in place. A moulded safety end is provided for building the tie into the outer leaf bed joint.

Ancon Teplo-Channel Ties provide unlimited adjustment along the length of the channel and are ideal for use with SFS and concrete frames. The range has been independently tested and is BBA approved; a British Board of Agrément certificate is available to download online.

For cavities from 70mm to 344mm Chi values (W/K) are given overleaf.

For sales and technical enquiries call: +44 (0) 114 275 5224

Ancon Teplo BF-CT-21 Wall Tie with 21/18 Cast-in Channel

Ancon Teplo BF-CT-28 Wall Tie with 28/15 Cast-in Channel
Information for U-value Calculations

For the accurate calculation of a wall’s U-value, it is important to use the correct information for the wall ties, rather than allowing a program to apply a default value as this will over-estimate the effect of an Ancon Wall Tie. BS EN ISO 6946 permits the corrections due to wall ties (ΔU) and air gaps between insulation boards etc to be omitted if the corrections amount to less than 3% of the uncorrected U-value of the wall.

Ancon Teplo-Channel Basalt Fibre Wall Ties

The range of basalt fibre channel ties have been thermally modelled by a third party expert to provide accurate Chi values for each tie length and channel end type. To understand the effect of these wall ties in a square metre, the Chi value (W/K) is multiplied by the number of wall ties. The exceptional thermal efficiency of the Ancon Teplo range is such that it is unlikely ever to be taken into account in U-value calculations as a thermal bridge.

<table>
<thead>
<tr>
<th>Tie Reference</th>
<th>Tie Type</th>
<th>Tie Length (mm)</th>
<th>Cavity (mm)</th>
<th>Chi Value (W/K)</th>
<th>ΔU, 2.5 ties/m² (W/m²K)</th>
<th>ΔU, 3.7 ties/m² (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teplo-BF-CT 21 - 150</td>
<td>2</td>
<td>150</td>
<td>70 - 94</td>
<td>0.0009</td>
<td>0.00225</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 21 - 175</td>
<td>2</td>
<td>175</td>
<td>95 - 119</td>
<td>0.0006</td>
<td>0.00150</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 21 - 200</td>
<td>2</td>
<td>200</td>
<td>120 - 144</td>
<td>0.0004</td>
<td>0.00100</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 21 - 225</td>
<td>2</td>
<td>225</td>
<td>145 - 169</td>
<td>0.0003</td>
<td>0.00075</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 21 - 250</td>
<td>2</td>
<td>250</td>
<td>170 - 194</td>
<td>0.0003</td>
<td>0.00075</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 21 - 275</td>
<td>2</td>
<td>275</td>
<td>195 - 219</td>
<td>0.0002</td>
<td>0.00050</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 21 - 300</td>
<td>2</td>
<td>300</td>
<td>220 - 244</td>
<td>0.0002</td>
<td>0.00050</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 21 - 325</td>
<td>3</td>
<td>325</td>
<td>245 - 269</td>
<td>0.0002</td>
<td>0.00050</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 21 - 350</td>
<td>3</td>
<td>350</td>
<td>270 - 294</td>
<td>0.0001</td>
<td>0.00025</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 21 - 375</td>
<td>3</td>
<td>375</td>
<td>295 - 319</td>
<td>0.0001</td>
<td>0.00025</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 28 - 150</td>
<td>2</td>
<td>150</td>
<td>70 - 94</td>
<td>0.0009</td>
<td>0.00225</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 28 - 175</td>
<td>2</td>
<td>175</td>
<td>95 - 119</td>
<td>0.0006</td>
<td>0.00150</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 28 - 200</td>
<td>2</td>
<td>200</td>
<td>120 - 144</td>
<td>0.0004</td>
<td>0.00100</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 28 - 225</td>
<td>2</td>
<td>225</td>
<td>145 - 169</td>
<td>0.0003</td>
<td>0.00075</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 28 - 250</td>
<td>2</td>
<td>250</td>
<td>170 - 194</td>
<td>0.0003</td>
<td>0.00075</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 28 - 275</td>
<td>2</td>
<td>275</td>
<td>195 - 219</td>
<td>0.0002</td>
<td>0.00050</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 28 - 300</td>
<td>2</td>
<td>300</td>
<td>220 - 244</td>
<td>0.0002</td>
<td>0.00050</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 28 - 325</td>
<td>3</td>
<td>325</td>
<td>245 - 269</td>
<td>0.0002</td>
<td>0.00050</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 28 - 350</td>
<td>3</td>
<td>350</td>
<td>270 - 294</td>
<td>0.0001</td>
<td>0.00025</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 28 - 375</td>
<td>3</td>
<td>375</td>
<td>295 - 319</td>
<td>0.0001</td>
<td>0.00025</td>
<td></td>
</tr>
<tr>
<td>Teplo-BF-CT 28 - 400</td>
<td>3</td>
<td>400</td>
<td>320 - 344</td>
<td>0.0001</td>
<td>0.00025</td>
<td></td>
</tr>
</tbody>
</table>

Data based on thermal modelling using 100mm thick mineral wool in a full fill cavity with channel cast into concrete and Teplo-BF-CT ties bridging the insulation zone. Cavity range values refer to cast-in channels. For surface-fixed 28/15 applications, cavity range values should be increased by 15mm.

Note: Thermal values will vary for other wall build-ups. For more information please contact Leviat.
Innovative engineered products and construction solutions that allow the industry to build safer, stronger and faster.
Contact Leviat locally
For more information on the products featured here, please contact Leviat:

United Kingdom
Sheffield
President Way,
President Park,
Sheffield S4 7UR
Tel: +44 - 114 275 5224
Email: info.uk@leviat.com
Contact Leviat worldwide

Australia
98 Kurrajong Avenue,
Mount Druitt, Sydney, NSW 2770
Tel: +61 - 2 8808 3100
Email: info.au@leviat.com

Austria
Leonard-Bernstein-Str. 10
Saturn Tower, 1220 Wien
Tel: +43 - 1 - 259 6770
Email: info.at@leviat.com

Belgium
Industrielaan 2
1740 Ternat
Tel: +32 - 2 - 582 29 45
Email: info.be@leviat.com

China
Room 601 Tower D,
Vantone Centre
No. A8 Chaoyang Men Wai Street
Chaoyang District,
Beijing P.R. China 100020
Tel: +86 - 10 5907 3200
Email: info.cn@leviat.com

Czech Republic
Business Center Šafránkova
Šafránkova 1236/1
185 00 Praha 5
Tel: +420 - 311 - 690 060
Email: info.cz@leviat.com

Finland
Vädursgatan 5
412 50 Göteborg / Sweden
Tel: +358 (0)10 6338781
Email: info.fi@leviat.com

France
6, Rue de Cabanis
FR 31240 L’Union
Toulouse
Tel: +33 - 5 - 34 25 54 82
Email: info.fr@leviat.com

Germany
Liebigstrasse 14
40764 Langenfeld
Tel: +49 - 2173 - 970 - 0
Email: info.de@leviat.com

India
309, 3rd Floor
Orion Business Park
Ghodbunder Road
Kpurwadi, Thane West,
Thane, Maharashtra 400607
Tel: +91 - 22 2589 2032
Email: info.in@leviat.com

Italy
Via F.Li Bronzetti 28
24124 Bergamo
Tel: +39 - 035 - 0760711
Email: info.it@leviat.com

Malaysia
28 Jalan Anggerik Mokara 31/59
Kota Kemuning,
40160 Shah Alam Selangor
Tel: +603 - 5122 4182
Email: info.my@leviat.com

Netherlands
Oostermaat 3
7623 CS Borne
Tel: +31 - 74 - 267 14 49
Email: info.nl@leviat.com

New Zealand
2/19 Nuttall Drive, Hillsborough,
Christchurch 8022
Tel: +64 - 3 376 5205
Email: info.nz@leviat.com

Norway
Vestre Svanholmen 5
4313 Sandnes
Tel: +47 - 51 82 34 00
Email: info.no@leviat.com

Philippines
2933 Regus, Joy Nostalg,
ADB Avenue, Ortigas Center
Pasig City
Tel: +63 - 2 7957 6381
Email: info.ph@leviat.com

Poland
Ul. Obornicka 287
60-691 Poznan
Tel: +48 - 61 - 622 14 14
Email: info.pl@leviat.com

Singapore
14 Benoi Crescent
Singapore 629977
Tel: +65 - 6266 6802
Email: info.sg@leviat.com

Spain
Poligono Industrial Santa Ana
c/ Ignacio Zuloaga, 20
28522 Rivas-Vaciamadrid
Tel: +34 - 91 632 18 40
Email: info.es@leviat.com

Sweden
Vädursgatan 5
412 50 Göteborg
Tel: +46 - 31 - 98 58 00
Email: info.se@leviat.com

Switzerland
Grenzstrasse 24
3250 Lyss
Tel: +41 (0)800 22 66 00
Email: info.ch@leviat.com

United Arab Emirates
RA08 TB02, PO Box 17225
JAFZA, Jebel Ali, Dubai
Tel: +971 (0)4 883 4346
Email: info.ae@leviat.com

United Kingdom
President Way,
President Park,
Sheffield S4 7UR
Tel: +44 - 114 275 5224
Email: info.uk@leviat.com

USA / Canada
6467 S Falkenburg Road
Riverview, FL 33578
Tel: (800) 423-9140
Email: info.us@leviat.us

For countries not listed
Email: info@leviat.com

Notes regarding this document
© Protected by copyright. The information in this publication is based on state-of-the-art technology at the time of publication. In every case, project working details should be entrusted to appropriately qualified and experienced persons. Leviat shall not accept liability for the accuracy of the information in this document or for any printing errors. We reserve the right to make technical and design changes at any time. With a policy of continuous product development, Leviat reserves the right to modify product design and specification at any time.