Isotec Thermally Insulated Balcony Connectors for Concrete-to-Concrete Applications

100% Class A1 Non-Combustible Components

Fully compliant with The Building (Amendment) Regulations 2018:
The Government’s ban on combustible materials in external walls, following a review of fire safety in high-rise residential buildings

Ancon®
Isotec Thermally Insulated Balcony Connectors
for Concrete-to-Concrete Applications
We are one team. We are Leviat.

Leviat is the new name of CRH’s construction accessories companies worldwide.

Under the Leviat brand, we are uniting the expertise, skills and resources of Ancon and its sister companies to create a world leader in fixing, connecting and anchoring technology.

The products you know and trust will remain an integral part of Leviat’s comprehensive brand and product portfolio. As Leviat, we can offer you an extended range of specialist products and services, greater technical expertise, a larger and more agile supply chain and better, faster innovation.

By bringing together CRH’s construction accessories family as one global organisation, we are better equipped to meet the needs of our customers, and the demands of construction projects, of any scale, anywhere in the world.

This is an exciting change. Join us on our journey.

Read more about Leviat at Leviat.com
Our product brands include:

Ancon®
HALFEN
HELIFIX
ISEDIO
PLAKA

60 locations
sales in 30+ countries
3000 people worldwide

Leviat.com
Ancon Isotec

Isotec is a high performance thermal break system for concrete-to-concrete applications. It is particularly suitable for highly energy-efficient structures, heavily congested or stepped floor slabs where compression bars would be difficult to accommodate.

Each unit is manufactured as a non-deformable cage offering high rigidity and dimensional stability.

Brochures are available for the full range of products in the Ancon Insulated Balcony Connector portfolio, including:

- Ancon STS/SSTS - connecting steel balconies to structural steel frames
- Ancon STC/SSTC - anchoring steel balconies to concrete floor slabs

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Components</td>
<td>3</td>
</tr>
<tr>
<td>Types and Applications</td>
<td>3-4</td>
</tr>
<tr>
<td>Design Resistances</td>
<td>5-9</td>
</tr>
<tr>
<td>Design Considerations</td>
<td>10</td>
</tr>
<tr>
<td>Installation Guidance</td>
<td>11</td>
</tr>
</tbody>
</table>
System Components

Material Combustibility
Following a review of fire safety, the Government has banned the use of combustible materials in the external walls of high-rise residential buildings in England.

Ancon Isotec connectors are fully compliant with the material combustibility requirements of The Building (Amendment) Regulations 2018. All components are European classification A1 and will not contribute to a fire at any stage, even a fully developed fire. Contact Leviat for further information.

System Benefits
✓ Inherently fire-resistant mineral wool insulation
✓ Formed from 100% Class A1 non-combustible components
✓ Compression studs reduce rebar congestion and simplify installation
✓ Continuous stainless steel reinforcement maximises strength, thermal efficiency and corrosion protection
✓ Supplied as a complete unit providing rigidity and dimensional stability
✓ Extensive product line to suit a wide range of applications

Reinforcement
Tensile and shear reinforcement consist of either 1.4301 or 1.4362 highly corrosion-resistant stainless steel, with a minimum characteristic strength $R_{p0.2}$ of 500 N/mm². Tensile bars are continuous with no structural welding or point of weakness. Compression studs are manufactured from 12mm diameter, high resistance 1.4301 stainless steel bars with hot-forged heads.

Stainless steel is three times more thermally efficient than carbon steel. In addition to thermal and durability benefits, stainless steel reinforcement reduces concrete cover requirements and can therefore provide additional design efficiencies over carbon steel systems.

Insulation
Fire-resistant ROCKWOOL® mineral wool insulation is protected by a stainless steel U-shaped profile top and bottom. Continuous offset slots reduce the cross-sectional area of steel used, minimising the thermal conductivity of this Class A1 non-combustible component. A label is affixed to the top identifying the system type and direction of placement.

<table>
<thead>
<tr>
<th>Thickness:</th>
<th>80mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Length:</td>
<td>1000mm/500mm</td>
</tr>
<tr>
<td>Density:</td>
<td>100 kg/m³ minimum</td>
</tr>
<tr>
<td>ψ:</td>
<td>0.3 to 0.18 W/mK (depending on construction)</td>
</tr>
<tr>
<td>Fire resistance:</td>
<td>120 minutes as assessed by CSTB</td>
</tr>
</tbody>
</table>

Isotec Types and Applications

ACTP-MV-080

System height = Slab thickness = 160-250mm

Slab to slab transfer of bending moment and shear forces

ROCKWOOL is a registered trade mark of ROCKWOOL International A/S
Thermally Insulated Balcony Connectors

Isotec Types and Applications

ACTP-DMV-080

Slab to slab at same level, transfer of bending moment and shear forces, both positive and negative

ACTP-DV-080

Slab to slab at same level, transfer of shear forces, positive and negative

ACTP-MV-080 SB

Slab to wall, downwards transfer of bending moment and shear forces

ACTP-MV-080 WB

Slab to wall downwards transfer of bending moment and shear forces

ACTP-DV-080 WBH

Shear only, positive and negative. Suitable for slab to wall, slab to upstand beam and slab to downstand beam connections.

ACTP-MV-080 WH

Slab to wall, upwards transfer of bending moment and shear forces

ACTP-MV-080 SH

Slab to slab with 100mm or 150mm level difference in slab

ACTP-V-080

Slab to slab at same level transfer of shear forces only

ACTP-V-080 WBTT

Shear only. Suitable for slab to wall, slab to upstand beam and slab to downstand beam connections.

ACTP-00-080

Non structural thermal break Suitable for installation infill and top-up strips

Notes: The tables use concrete grade C30/37 and 30mm cover - for lower concrete grade, please contact Ancon. The design resistances given are per unit (see unit length). All sketches show the balcony on the left hand side and the main slab on the right.
Design Resistances

Instructions for Lookup Table
The tables on the following pages help determine the appropriate Ancon Isotec System Type (MV, DMV etc) and exact product specification for your project. Identify the relevant table title from the types and applications on pages 3 and 4 and, in the left hand column of that table, find the relevant slab depth (h) for your project and follow the row across until you find the applicable Design Resistance figure. Follow the column upwards to find the resultant Design Capacity Type (e.g. 01, 02, 03...).

Isotec Type ACTP-MV-080

Design Capacity Type | Tension Bars | Compression Bars | Shear Bars |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTP-MV-080</td>
<td>01</td>
<td>02</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>04</td>
<td>05</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>08</td>
<td>09</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit Length (mm) 1000 1000

Design Resistance Slab Depth h (mm)

<table>
<thead>
<tr>
<th>h (mm)</th>
<th>Ls (mm)</th>
<th>30mm</th>
<th>80mm</th>
<th>140mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
</tr>
<tr>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
</tr>
<tr>
<td>260</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
</tr>
</tbody>
</table>

Notes: All sketches show the balcony on the left hand side and the main slab on the right.
The tables use concrete grade C30/37 and 30mm cover - for lower concrete grade, please contact Ancon. The design resistances given are per unit (see unit length). The tables provide design capacities for standard 80mm thick isotec elements. Special 120mm thick Ancon isotec elements with enhanced thermal properties may also be designed and manufactured by Levitat upon request; please contact us for further information.

ACTP-MV-080 Types 12 to 19 feature a continuous welded plate.
Thermally Insulated Balcony Connectors

Ancon Isotec Product Specification Structure

<table>
<thead>
<tr>
<th>ACTP-</th>
<th>DMV-</th>
<th>080-</th>
<th>200-</th>
<th>03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Isotec Code</td>
<td>System Type</td>
<td>Standard Insulation Thickness</td>
<td>Slab Depth (h)</td>
<td>Design Capacity (see Table)</td>
</tr>
</tbody>
</table>

Isotec Type ACTP-DMV-080

<table>
<thead>
<tr>
<th>Design Capacity Type</th>
<th>03</th>
<th>05</th>
<th>08</th>
<th>11</th>
<th>13</th>
<th>16</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension Bars</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>Compression Bars</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>Shear Bars</td>
<td>2 x 80</td>
</tr>
<tr>
<td>Ls (mm)</td>
<td>430</td>
<td>430</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>680</td>
</tr>
<tr>
<td>Unit Length (mm)</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Design Resistance

<table>
<thead>
<tr>
<th>Slab Depth (h) (mm)</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
<th>200</th>
<th>210</th>
<th>220</th>
<th>230</th>
<th>240</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>+/- 6.28</td>
<td>+/- 7.16</td>
<td>+/- 8.08</td>
<td>+/- 9.00</td>
<td>+/- 9.92</td>
<td>+/- 10.84</td>
<td>+/- 11.75</td>
<td>+/- 12.7</td>
<td>+/- 13.61</td>
<td>+/- 14.53</td>
<td>+/- 15.46</td>
</tr>
<tr>
<td>+/- 9.77</td>
<td>+/- 12.65</td>
<td>+/- 13.92</td>
<td>+/- 15.24</td>
<td>+/- 16.6</td>
<td>+/- 17.68</td>
<td>+/- 19.21</td>
<td>+/- 20.7</td>
<td>+/- 21.88</td>
<td>+/- 23.3</td>
<td>+/- 26.9</td>
</tr>
<tr>
<td>+/- 19.77</td>
<td>+/- 22.20</td>
<td>+/- 24.71</td>
<td>+/- 27.85</td>
<td>+/- 29.80</td>
<td>+/- 32.34</td>
<td>+/- 34.88</td>
<td>+/- 37.42</td>
<td>+/- 39.96</td>
<td>+/- 42.50</td>
<td>+/- 45.1</td>
</tr>
<tr>
<td>+/- 25.43</td>
<td>+/- 28.59</td>
<td>+/- 31.96</td>
<td>+/- 35.22</td>
<td>+/- 38.00</td>
<td>+/- 41.88</td>
<td>+/- 45.21</td>
<td>+/- 48.54</td>
<td>+/- 51.87</td>
<td>+/- 55.20</td>
<td>+/- 59.42</td>
</tr>
<tr>
<td>+/- 33.86</td>
<td>+/- 38.00</td>
<td>+/- 42.26</td>
<td>+/- 46.55</td>
<td>+/- 50.84</td>
<td>+/- 55.13</td>
<td>+/- 59.42</td>
<td>+/- 63.71</td>
<td>+/- 68.00</td>
<td>+/- 72.29</td>
<td>+/- 77.51</td>
</tr>
<tr>
<td>+/- 42.33</td>
<td>+/- 47.41</td>
<td>+/- 52.63</td>
<td>+/- 57.88</td>
<td>+/- 63.13</td>
<td>+/- 68.38</td>
<td>+/- 73.63</td>
<td>+/- 78.98</td>
<td>+/- 84.13</td>
<td>+/- 89.38</td>
<td>+/- 106.47</td>
</tr>
</tbody>
</table>

Notes:

All sketches show the balcony on the left hand side and the main slab on the right. The tables use concrete grade C30/37 and 30mm cover - for lower concrete grade, please contact Ancon. The design resistances given are per unit (see unit length). The tables provide design capacities for standard 80mm thick Isotec elements. Special 120mm thick Ancon Isotec elements with enhanced thermal properties may also be designed and manufactured by Leviat upon request: please contact us for further information.
Ancon Isotec Product Specification Structure

Isotec Type ACTP-V-080

<table>
<thead>
<tr>
<th>Design Capacity Type</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Bars</td>
<td>2012</td>
<td>4012</td>
<td>2012</td>
<td>4012</td>
<td>2012</td>
<td>4012</td>
<td>4012</td>
<td>4012</td>
<td>4012</td>
<td>4012</td>
</tr>
<tr>
<td>Shear Bars</td>
<td>406</td>
<td>406</td>
<td>606</td>
<td>606</td>
<td>806</td>
<td>806</td>
<td>1006</td>
<td>626</td>
<td>626</td>
<td>8010</td>
</tr>
<tr>
<td>Ls (mm)</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>455</td>
<td>455</td>
<td>565</td>
</tr>
<tr>
<td>Unit Length (mm)</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slab Design Resistance

<table>
<thead>
<tr>
<th>V<sub>Rd</sub> (kN/m)</th>
<th>160</th>
<th>170-180</th>
<th>190-200</th>
<th>210-220</th>
<th>230-250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ls (mm)</td>
<td>34.77</td>
<td>34.77</td>
<td>34.77</td>
<td>34.77</td>
<td>34.77</td>
</tr>
<tr>
<td>V<sub>Rd</sub> (kN/m)</td>
<td>31.61</td>
<td>34.77</td>
<td>34.77</td>
<td>34.77</td>
<td>34.77</td>
</tr>
<tr>
<td>Ls (mm)</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

Isotec Type ACTP-DV-080

<table>
<thead>
<tr>
<th>Design Capacity Type</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Bars</td>
<td>2012</td>
<td>4012</td>
<td>2012</td>
<td>4012</td>
<td>2012</td>
<td>4012</td>
<td>4012</td>
<td>4012</td>
<td>4012</td>
<td>4012</td>
</tr>
<tr>
<td>Shear Bars</td>
<td>2 x 406</td>
<td>2 x 406</td>
<td>2 x 606</td>
<td>2 x 606</td>
<td>2 x 806</td>
<td>2 x 1006</td>
<td>2 x 626</td>
<td>2 x 626</td>
<td>2 x 6010</td>
<td>2 x 6010</td>
</tr>
<tr>
<td>Ls (mm)</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>455</td>
<td>455</td>
<td>565</td>
</tr>
<tr>
<td>Unit Length (mm)</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slab Design Resistance

<table>
<thead>
<tr>
<th>V<sub>Rd</sub> (kN/m)</th>
<th>160</th>
<th>170-180</th>
<th>190-200</th>
<th>210-220</th>
<th>230-250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ls (mm)</td>
<td>34.77</td>
<td>34.77</td>
<td>34.77</td>
<td>34.77</td>
<td>34.77</td>
</tr>
<tr>
<td>V<sub>Rd</sub> (kN/m)</td>
<td>+/- 31.61</td>
<td>+/- 31.61</td>
<td>+/- 47.41</td>
<td>+/- 47.41</td>
<td>+/- 63.22</td>
</tr>
<tr>
<td>Ls (mm)</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

Notes: All sketches show the balcony on the left hand side and the main slab on the right.

The tables use concrete grade C30/37 and 30mm cover - for lower concrete grade, please contact Ancon. The design resistances given are per unit (see unit length). The tables provide design capacities for standard 80mm thick Isotec elements. Special 120mm thick Ancon Isotec elements with enhanced thermal properties may also be designed and manufactured by Leviat upon request; please contact us for further information.
Ancon Isotec Product Specification Structure

ACTP- MV- 080-

<table>
<thead>
<tr>
<th>Standard Isotec Code</th>
<th>System Type</th>
<th>Slab Depth (h)</th>
<th>Design Capacity</th>
<th>Anchorage Type</th>
<th>Step Height (cm) (See sketches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTP-</td>
<td>MV-</td>
<td>080-</td>
<td>200-</td>
<td>03-</td>
<td>10</td>
</tr>
</tbody>
</table>

Isotec Types ACTP-MV-080 SH and ACTP-MV-080 SB

<table>
<thead>
<tr>
<th>Design Capacity Type</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension Bars</td>
<td>406</td>
<td>608</td>
<td>608</td>
<td>608</td>
<td>608</td>
<td>1008</td>
<td>6210</td>
<td>6012</td>
<td>6012</td>
<td>8012</td>
<td>12010</td>
<td>12012</td>
<td>12012</td>
<td>12012</td>
<td>12012</td>
<td>12012</td>
<td>12012</td>
<td>12012</td>
<td>14012</td>
</tr>
<tr>
<td>Compression Bars</td>
<td>4012</td>
<td>4012</td>
<td>4012</td>
<td>6012</td>
<td>6012</td>
<td>6012</td>
<td>8012</td>
<td>8012</td>
<td>10012</td>
<td>12012</td>
</tr>
<tr>
<td>Shear Bars</td>
<td>406</td>
<td>406</td>
<td>606</td>
<td>606</td>
<td>606</td>
<td>608</td>
</tr>
<tr>
<td>Ls (mm)</td>
<td>430</td>
<td>430</td>
<td>430</td>
<td>430</td>
<td>430</td>
<td>530</td>
<td>530</td>
<td>530</td>
<td>530</td>
<td>530</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>680</td>
</tr>
<tr>
<td>Unit Length (mm)</td>
<td>1000</td>
</tr>
</tbody>
</table>

Design Resistance

<table>
<thead>
<tr>
<th>Slab Depth (h mm)</th>
<th>30mm</th>
<th>80mm</th>
<th>150mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(_{Rd}) (kN/m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>8.08</td>
<td>12.00</td>
<td>12.09</td>
</tr>
<tr>
<td>170</td>
<td>8.81</td>
<td>13.18</td>
<td>13.22</td>
</tr>
<tr>
<td>180</td>
<td>9.84</td>
<td>14.65</td>
<td>14.76</td>
</tr>
<tr>
<td>190</td>
<td>10.87</td>
<td>16.12</td>
<td>16.31</td>
</tr>
<tr>
<td>200</td>
<td>11.90</td>
<td>17.59</td>
<td>17.85</td>
</tr>
<tr>
<td>210</td>
<td>12.93</td>
<td>19.05</td>
<td>19.40</td>
</tr>
<tr>
<td>220</td>
<td>13.96</td>
<td>20.52</td>
<td>20.95</td>
</tr>
<tr>
<td>230</td>
<td>15.00</td>
<td>21.99</td>
<td>22.49</td>
</tr>
<tr>
<td>240</td>
<td>16.03</td>
<td>23.46</td>
<td>24.04</td>
</tr>
<tr>
<td>250</td>
<td>17.08</td>
<td>24.92</td>
<td>25.58</td>
</tr>
<tr>
<td>V(_{Rd}) (kN/m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>31.61</td>
<td>31.61</td>
<td>47.41</td>
</tr>
<tr>
<td>170-180</td>
<td>34.77</td>
<td>34.77</td>
<td>52.16</td>
</tr>
<tr>
<td>190-200</td>
<td>34.77</td>
<td>34.77</td>
<td>52.16</td>
</tr>
<tr>
<td>210-220</td>
<td>34.77</td>
<td>34.77</td>
<td>52.16</td>
</tr>
<tr>
<td>230-250</td>
<td>34.77</td>
<td>34.77</td>
<td>52.16</td>
</tr>
</tbody>
</table>

ACTP-MV-080 Types 12 to 19 feature a continuous welded plate. Other step dimensions available on request.

Notes: All sketches show the balcony on the left hand side and the main slab on the right. The tables use concrete grade C30/37 and 30mm cover - for lower concrete grade, please contact Ancon. The design resistances given are per unit (see unit length). The tables provide design capacities for standard 80mm thick Isotec elements. Special 120mm thick Ancon Isotec elements with enhanced thermal properties may also be designed and manufactured by Leviat upon request: please contact us for further information.
Notes:

All sketches show the balcony on the left hand side and the main slab on the right.

The tables use concrete grade C30/37 and 30mm cover - for lower concrete grade, please contact Ancon. The design resistances given are per unit (see unit length). The tables provide design capacities for standard 80mm thick Isotec elements. Special 120mm thick Ancon Isotec elements with enhanced thermal properties may also be designed and manufactured by Leviat upon request: please contact us for further information.

Ancon Isotec Product Referencing

<table>
<thead>
<tr>
<th>ACTP-</th>
<th>MV-</th>
<th>080-</th>
<th>200-</th>
<th>03-</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Isotec Code</td>
<td>System Type</td>
<td>Standard Insulation Thickness</td>
<td>Slab Depth (h)</td>
<td>Design Capacity (see Table)</td>
<td>Anchorage Type (WH or WB see sketches)</td>
</tr>
</tbody>
</table>

Isotec Types ACTP-MV-080 WH and ACTP-MV-080 WB

<table>
<thead>
<tr>
<th>Design Resistance</th>
<th>Slab Depth (h mm)</th>
<th>M_{th} (kNm/m)</th>
<th>V_{th} (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>1000</td>
<td>8.06</td>
<td>39.07</td>
</tr>
<tr>
<td>170</td>
<td>1000</td>
<td>8.06</td>
<td>39.07</td>
</tr>
<tr>
<td>180</td>
<td>1000</td>
<td>8.06</td>
<td>39.07</td>
</tr>
<tr>
<td>190</td>
<td>1000</td>
<td>8.06</td>
<td>39.07</td>
</tr>
<tr>
<td>200</td>
<td>1000</td>
<td>8.06</td>
<td>39.07</td>
</tr>
<tr>
<td>210</td>
<td>1000</td>
<td>8.06</td>
<td>39.07</td>
</tr>
<tr>
<td>220</td>
<td>1000</td>
<td>8.06</td>
<td>39.07</td>
</tr>
<tr>
<td>230</td>
<td>1000</td>
<td>8.06</td>
<td>39.07</td>
</tr>
<tr>
<td>240</td>
<td>1000</td>
<td>8.06</td>
<td>39.07</td>
</tr>
<tr>
<td>250</td>
<td>1000</td>
<td>8.06</td>
<td>39.07</td>
</tr>
<tr>
<td>170-180</td>
<td>1000</td>
<td>10.07</td>
<td>41.83</td>
</tr>
<tr>
<td>190-200</td>
<td>1000</td>
<td>10.07</td>
<td>41.83</td>
</tr>
<tr>
<td>210-220</td>
<td>1000</td>
<td>10.07</td>
<td>41.83</td>
</tr>
<tr>
<td>230-250</td>
<td>1000</td>
<td>10.07</td>
<td>41.83</td>
</tr>
</tbody>
</table>
Thermally Insulated Balcony Connectors

Design Considerations

Local Reinforcement
Local reinforcement is required to guarantee that the forces are transferred between the Isotec unit and the concrete. Correct detailing in accordance with appropriate design codes and the recommendations provided here will ensure the Ancon Isotec system attains its full capacity.

Balcony Deflections
Formwork for in-situ balconies and pre-cast balconies must be given appropriate pre-camber so that, once props have been removed after the concrete has reached appropriate strength, the balcony is inclined in the correct direction and to the correct slope. We can advise on calculated deflections upon receipt of relevant design data.

Corner Details
To avoid a reinforcement clash at corners, 20mm thick mineral wool make-up strips are typically detailed on the Isotec units installed locally at the corner. The corner units should be specified shorter in height than those used elsewhere in the slab. The filler pieces are supplied glued to the top and bottom respectively of the adjacent Isotec corner units. Alternatively, if sufficient time is provided, special full height Isotec corner units can be manufactured that feature offset tension and shear bars to avoid clashes with adjacent units, eliminating the need for infill pieces.

Movement Joints
The maximum allowable uninterrupted length of balcony to be supported by Isotec units, before a movement joint is required, is given in the table in metres. At corners, the distance is half the lengths given.

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>8.00</th>
<th>9.20</th>
<th>10.10</th>
<th>11.30</th>
<th>13.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Centres, L (m)</td>
<td>8.00</td>
<td>9.20</td>
<td>10.10</td>
<td>11.30</td>
<td>13.00</td>
</tr>
</tbody>
</table>

Movement Joint Centres

Only Local Reinforcement - Main reinforcement omitted for clarity

- Overlapping bars must be determined by the project engineer
- Under no circumstances should Isotec elements be modified after manufacture. Bars should neither be bent nor cut without prior authorisation from us.
Installation Guidance

Prior to installation, ensure all Isotec elements have not been damaged during transit or site handling and that they correspond to the project specification.

Step 1
Place the Isotec system on the formwork in line with the project drawings, ensuring all Isotec elements are positioned and orientated as indicated on the product label.

Step 2
Position all necessary local and main reinforcement. Secure each Isotec unit to the slab reinforcement. Any gaps between Isotec elements must be filled with equivalent insulating material.

Step 3
Concrete should be poured adjacent to the Isotec system and simultaneously to either side to avoid any displacement.

Precast applications
If Isotec elements are used in precast balconies, lifting systems must be positioned within the gaps between Isotec elements. Ensure the compression studs do not apply pressure on an internal structure already in position.
Innovative engineered products and construction solutions that allow the industry to build safer, stronger and faster.
Worldwide contacts for Leviat:

Australia
Leviat
98 Kurrajong Avenue,
Mount Druitt Sydney, NSW 2770
Tel: +61 - 2 8808 3100
Email: info.au@leviat.com

Austria
Leviat
Leonard-Bernstein-Str. 10
Saturn Tower, 1220 Wien
Tel: +43 - 1 - 259 8770
Email: info.at@leviat.com

Belgium
Leviat
Industrielaan 2
1740 Ternat
Tel: +32 - 2 - 582 29 45
Email: info.be@leviat.com

China
Leviat
Room 601 Tower D, Vantone Centre
No. A6 Chao Yang Men Wai Street
Chaoyang District
Beijing · P.R. China 100020
Tel: +86 - 10 5907 3200
Email: info.cn@leviat.com

Czech Republic
Leviat
Business Center Šafránkova
Šafránkova 1238/1
155 00 Praha 5
Tel: +420 - 311 - 690 060
Email: info.cz@leviat.com

Finland
Leviat
Vädersgatan 5
412 50 Göteborg / Sweden
Tel: +358 (0)10 6338781
Email: info.fi@leviat.com

France
Leviat
6, Rue de Cabanis
FR 31240 L'Union
Toulouse
Tel: +33 - 5 - 34 25 54 82
Email: info.fr@leviat.com

Germany
Leviat
Liebigstrasse 14
40764 Langenfeld
Tel: +49 - 2173 - 970 - 0
Email: info.de@leviat.com

India
Leviat
309, 3rd Floor, Orion Business Park
Ghodbunder Road, Kapurbawdi,
Thane West, Thane,
Maharashtra 400607
Tel: +91 - 22 2589 2032
Email: info.in@leviat.com

Italy
Leviat
Via F.Lii Bronzetti 28
24124 Bergamo
Tel: +39 - 035 - 0760711
Email: info.it@leviat.com

Malaysia
Leviat
28 Jalan Anggerik Mokara 31/59
Kota Kemuning, 40460 Shah Alam
Selangor
Tel: +603 - 5122 4182
Email: info.my@leviat.com

Netherlands
Leviat
Oostermaat 3
7623 CS Borne
Tel: +31 - 74 - 267 14 49
Email: info.nl@leviat.com

New Zealand
Leviat
2/19 Nuttall Drive, Hillsborough,
Christchurch 8022
Tel: +64 - 3 376 5205
Email: info.nz@leviat.com

Norway
Leviat
Vestre Svanholmen 5
4313 Sandnes
Tel: +47 - 51 82 34 00
Email: info.no@leviat.com

Philippines
Leviat
2933 Regus, Joy Nostalg,
ABD Avenue
Ortigas Center
Pasig City
Tel: +63 - 2 7957 6381
Email: info.ph@leviat.com

Poland
Leviat
Ul. Obornicka 287
60-691 Poznan
Tel: +48 - 61 - 622 14 14
Email: info.pl@leviat.com

Singapore
Leviat
14 Benoi Crescent
Singapore 629977
Tel: +65 - 6266 6802
Email: info.sg@leviat.com

Spain
Leviat
Polígono Industrial Santa Ana
c/ Ignacio Zuloaga, 20
28822 Rivas-Vaciamadrid
Tel: +34 - 91 632 18 40
Email: info.es@leviat.com

Sweden
Leviat
Vädersgatan 5
412 50 Göteborg
Tel: +46 - 31 - 98 58 00
Email: info.se@leviat.com

Switzerland
Leviat
Grenzstrasse 24
3250 Lyss
Tel: +41 - 31 750 3030
Email: info.ch@leviat.com

United Kingdom
Leviat
President Way, President Park,
Sheffield, S4 7UR
Tel: +44 - 114 275 5224
Email: info.uk@leviat.com

United States of America
Leviat
6467 8 Falkenburg Rd.
Riverview, FL 33578
Tel: (800) 423-9140
Email: info.us@leviat.us

For countries not listed
Email: info@leviat.com

Leviat.com

Notes regarding this catalogue
© Protected by copyright. The construction applications and details provided in this publication are indicative only. In every case, project working details should be entrusted to appropriately qualified and experienced persons. Whilst every care has been exercised in the preparation of this publication to ensure that any advice, recommendations or information is accurate, no liability or responsibility of any kind is accepted by Leviat for inaccuracies or printing errors. Technical and design changes are reserved. With a policy of continuous product development, Leviat reserves the right to modify product design and specification at any time.
For more information on these products, contact:

Leviat
President Way
President Park
Sheffield, S4 7UR
United Kingdom
Tel: +44 (0) 114 275 5224
Fax: +44 (0) 114 276 8543
Email: info.ancon.uk@leviat.com

For sales and technical enquiries:
Email: reinforcement.uk@leviat.com
Ancon.co.uk
Leviat.com