Reinforcing Bar Couplers

Compliant with BS 8597: 2015

for the Construction Industry
Under the Leviat brand, we are uniting the expertise, skills and resources of Ancon and its sister companies to create a world leader in fixing, connecting and anchoring technology.

The products you know and trust will remain an integral part of Leviat’s comprehensive brand and product portfolio. As Leviat, we can offer you an extended range of specialist products and services, greater technical expertise, a larger and more agile supply chain and better, faster innovation.

By bringing together CRH’s construction accessories family as one global organisation, we are better equipped to meet the needs of our customers, and the demands of construction projects, of any scale, anywhere in the world.

This is an exciting change. Join us on our journey.

Read more about Leviat at Leviat.com
Our product brands include:

Ancon HALFEN HELIFIX
ISEDIO PLAKA

60 locations sales in 30+ countries 3000 people worldwide
Reinforcing Bar Couplers
Simplify the design and construction of concrete

Lapped joints are not always an appropriate means of connecting reinforcing bars. The use of laps can be time consuming in terms of design and installation and can lead to greater congestion within the concrete because of the increased amount of rebar used.

Ancon couplers can simplify the design and construction of reinforced concrete and reduce the amount of reinforcement required.

Lapped joints are dependent upon the concrete for load transfer. For this reason any degradation in the integrity of the concrete could significantly affect the performance of the joint. The strength of a mechanical splice is independent of the concrete in which it is located and will retain its strength despite loss of cover as a result of impact damage or seismic event.

The range of reinforcing bar couplers is the most comprehensive available and includes tapered threaded, parallel threaded, mechanically bolted and grouted couplers. Couplers for stainless steel and cryogenic-grade rebars complete the range.

Contents
Coupler Selection 4-5
Tapered Thread Standard Series 6-7
Tapered Thread Positional Series 8-9
Tapered Thread Transition Series 10
Tapered Thread Weldable Couplers 11
Tapered Thread Headed Anchors 12
Accessories 12
BT Stainless Steel Couplers 13
Bartec Plus Types A, B & C 14-16
Bartec Plus Transition Couplers 17-19
Bartec Plus Weldable Anchors 20
Bartec Plus Headed Anchors 21
MBT ET Series 22
MBT Transition Series 23
Electric Wrench 23
MBT Continuity C Series 24
Repair and Remedial Work 25
MBT Headed Anchors 26
HM Grout Sleeve Couplers 27
Other Ancon Products 27
Comprehensive range

Simplify design and construction

Reduce amount of reinforcement required

Dedicated sales support

Available through major rebar stockists and approved distributors

ISO 9001, ISO 14001, OHSAS 18001

Eurocode 2 compliant

BS 8597: 2015 compliant

HAPAS approval for MBT ET Couplers

Technical approval TA1-B 5015 for Tapered Thread Couplers

Technical approval TA1-A 5058 for Bartec Plus Couplers

Refer to the approval reports for coupler sizes and types covered.
Reinforcing Bar Couplers

For many years the use of mechanical couplers to join reinforcing bars has been regarded as a means of reducing the use of long bars. Engineers and contractors now recognise the benefits of using couplers to accelerate the speed of construction, increase productivity and simplify design details.

Sales Support

Our ‘Products for Structural Concrete’ Division provides assistance for clients who require products which are used in concrete construction. These include, but are not restricted to, reinforcing bar couplers, reinforcement continuity systems, punching shear reinforcement and shear load connectors. A dedicated team is available to offer technical advice, pricing information and guidance on the selection of the most appropriate product for a specific application. Enquiries from overseas are also dealt with by the PSC team. To contact the team please email reinforcement.uk@leviat.com or call +44 (0) 114 275 5224.

UK and Ireland Edition

This literature is written for the UK and Irish market. It does not feature the full Ancon range of couplers or national approvals. For other products and bar sizes, please contact Leviat.

Coupler Selection

The Ancon range of reinforcing bar couplers require different fixing methods. This, together with the quantity to be fixed and the location, will determine which is the most appropriate coupler for a particular situation.

Tapered Thread (pages 6-12)

The Tapered Thread coupler is designed to suit the majority of applications which require the joining of reinforcing bars. The ends of the rebar are cut square and a tapered thread is cut onto the bar to suit the tapered thread coupler. The sleeve is tightened onto the threaded bar end using a calibrated torque wrench.

Bartec Plus (pages 14-21)

Bartec Plus couplers provide a full strength joint and are the smallest couplers in the Ancon range. They are particularly appropriate for applications where fatigue is an issue. The ends of the bars are cut square and marginally enlarged. A parallel thread is then rolled onto the ends to suit the threaded sleeve. The coupler is installed using a pipe or chain wrench. Calibrated torque wrenches are not required.

MBT (pages 22-26)

MBT couplers are suitable where it is not convenient to have the bar ends prepared for parallel thread or tapered thread couplers. The bars are supported within the coupler on two serrated saddles. Bars are locked in place by a series of special lockshear bolts, the heads of which shear off when the predetermined tightening torque is reached, providing a visual check of correct installation.

Stainless Steel Couplers (page 13)

Grout Sleeve Couplers (page 27)

Characteristic Strengths of High Yield Reinforcing Bar

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>Area (mm²)</th>
<th>Grade B500 Fy (kN)</th>
<th>Grade B500B UTL (kN)</th>
<th>Grade B500C UTL (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>113.1</td>
<td>56.5</td>
<td>81.1</td>
<td>65.0</td>
</tr>
<tr>
<td>16</td>
<td>201.1</td>
<td>100.5</td>
<td>108.6</td>
<td>115.6</td>
</tr>
<tr>
<td>20</td>
<td>314.2</td>
<td>157.1</td>
<td>169.6</td>
<td>180.6</td>
</tr>
<tr>
<td>25</td>
<td>490.9</td>
<td>245.4</td>
<td>265.1</td>
<td>282.3</td>
</tr>
<tr>
<td>32</td>
<td>804.2</td>
<td>402.1</td>
<td>434.3</td>
<td>462.4</td>
</tr>
<tr>
<td>40</td>
<td>1,256.6</td>
<td>628.3</td>
<td>678.6</td>
<td>722.6</td>
</tr>
</tbody>
</table>
Coupler Selection

Availability of Couplers

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>Tapered Thread</th>
<th>Bartec Plus</th>
<th>MBT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tapered Thread Standard</td>
<td>Type A</td>
<td>Type B</td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>16</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>20</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>25</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>32</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>40</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Application Guide

The following table provides a guide when selecting the most appropriate couplers for specific applications. Recommendations are based upon typical usage. Please contact Leviat for further assistance on the correct selection and specification of Ancon couplers.

<table>
<thead>
<tr>
<th>Application</th>
<th>Tapered Thread</th>
<th>BT-S</th>
<th>Bartec Plus</th>
<th>MBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall to slab connection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Wall to pre-cast beam connection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Column construction</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Extension / repairs to existing structures</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PC element to PC element connection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Closing of access openings</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Rebar cage pre-fabrication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hook bars to pile connection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fatigue applications / highway structures</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Bar end terminations</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Cryogenic Couplers

The Ancon CTT range of tapered-thread couplers has been designed for use where cryogenic-grade reinforcing bar is being used. Typical construction projects include liquefied natural gas (LNG) and liquefied petroleum gas (LPG) storage tanks to EN 14620-3. Contact us for full technical details or download the product brochure online.
Reinforcing Bar Couplers

Tapered Thread
The Ancon range of Tapered Thread couplers is designed to suit the majority of applications which call for the joining of reinforcing bars. Available to suit bar sizes 12mm to 40mm, the couplers are installed quickly and easily on site without the need for specially trained personnel or specialised, expensive machinery.

The compact design of each coupler ensures suitability for use in confined situations where space is restricted or where the loss of cover must be minimised. The couplers are normally supplied fitted to the end of threaded bar, requiring only the engagement and tightening of the adjoining bar on site. In order to ensure correct installation, we specify the use of a torque wrench.

The range of Tapered Thread couplers is available through major rebar suppliers. Please contact Leviat for further details.

Standard Coupler
The Standard Tapered Thread coupler is suitable for connecting two bars of the same diameter, where one bar can be rotated. It comprises an internally threaded sleeve with two right hand threads which are tapered towards the middle of the coupler. The bar ends are square cut and a tapered thread is cut onto the bar. A nominal allowance of +25mm should be allowed per threaded bar end for square cutting the bar end.

The couplers are generally torqued onto the reinforcing bar in the bar threading shop, the internal threads protected by plastic end caps. The threaded ends of the continuation bar are protected by plastic thread protectors.

Engagement of the bar within the coupler is simplified by the tapered thread design which aids alignment. When the bar is fully engaged within the coupler, the continuation bar is tightened using a torque wrench.

The Ancon Standard Tapered Thread coupler is compliant with BS 8597: 2015 Steels for the Reinforcement of Concrete. Reinforcement Couplers. Requirements and Test Methods. They are designed to achieve failure loads in excess of 115% of the characteristic strength of grade 500 rebar.

Standard Coupler Dimensions

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Dia. (mm)</td>
<td>d</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>48</td>
</tr>
<tr>
<td>Coupler Length (mm)</td>
<td>l</td>
<td>58</td>
<td>70</td>
<td>74</td>
<td>90</td>
<td>112</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td>0.13</td>
<td>0.17</td>
<td>0.28</td>
<td>0.43</td>
<td>0.99</td>
</tr>
<tr>
<td>Torque (Nm)</td>
<td></td>
<td>60</td>
<td>110</td>
<td>165</td>
<td>285</td>
<td>285</td>
</tr>
<tr>
<td>Part No.</td>
<td></td>
<td>TTS12</td>
<td>TTS16</td>
<td>TTS20</td>
<td>TTS25</td>
<td>TTS32</td>
</tr>
</tbody>
</table>

Testing and Approvals
The Standard range of Tapered Thread couplers has been tested and approved by UK CARES to show compliance with the requirements of BS EN 1992-1-1: 2004 (Eurocode 2), BS 8110 and UK CARES TA1-B.
Installation
Tapered Thread Standard Series

1. The coupler is normally supplied fixed to the reinforcing bar, ready to be installed and cast in concrete.

2. After casting the concrete and when ready to extend, remove the plastic end cap from the coupler. Position the continuation bar in the sleeve and rotate the bar into the coupler.

3. Continue to screw the bar into the coupler until tight.

4. To ensure correct installation, tighten the joint to the specified torque using a calibrated torque wrench on the continuation bar. Tightening torques are shown in the table opposite.
Positional Coupler

The Ancon Tapered Thread Positional coupler is designed to be used in applications in which neither bar can be rotated. Having a degree of adjustability, the Positional coupler can also be used as a closer between two fixed bars.

The Positional coupler comprises three components, a male section, a female section and a locking nut. The male component has an internal tapered thread and an extended external parallel thread. The female component has a parallel thread and a tapered thread, both of which are internal. A locknut is used to secure the connection when the correct degree of adjustability has been achieved. All components, including the locknut must be tightened using a torque wrench.

Plastic thread protectors are used to prevent damage to the threaded bar ends and the internal threads of the couplers are protected by plastic end caps. A nominal allowance of +25mm should be allowed per threaded bar end for square cutting the bar end.

Testing & Approvals

The Positional range of Tapered Thread couplers has been tested and approved by UK CARES to show compliance with the requirements of BS EN 1992-1-1: 2004 (Eurocode 2), BS 8110 and UK CARES TA1-B. This range is also compliant with BS 8597: 2015.

Positional Coupler Dimensions

<table>
<thead>
<tr>
<th>Bar Diameter</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Dia.</td>
<td>d1</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>48</td>
<td>55</td>
</tr>
<tr>
<td>External Dia.</td>
<td>d2</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>48</td>
</tr>
<tr>
<td>Female Sleeve Length</td>
<td>l1</td>
<td>28</td>
<td>32</td>
<td>33</td>
<td>42</td>
<td>53</td>
</tr>
<tr>
<td>Locknut Length</td>
<td>ln</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Closed Length</td>
<td>lc</td>
<td>138</td>
<td>155</td>
<td>180</td>
<td>207</td>
<td>243</td>
</tr>
<tr>
<td>Max. Open Length</td>
<td>lo</td>
<td>178</td>
<td>196</td>
<td>231</td>
<td>266</td>
<td>305</td>
</tr>
<tr>
<td>Bar Insertion Prior to Engagement</td>
<td>li</td>
<td>9</td>
<td>15</td>
<td>8</td>
<td>16</td>
<td>28</td>
</tr>
<tr>
<td>Bar Insertion Full Engagement</td>
<td>le</td>
<td>23</td>
<td>24</td>
<td>26</td>
<td>34</td>
<td>37</td>
</tr>
<tr>
<td>Adjustable Length</td>
<td>la</td>
<td>23</td>
<td>24</td>
<td>26</td>
<td>34</td>
<td>37</td>
</tr>
<tr>
<td>Max Distance between Bar Ends</td>
<td>lm</td>
<td>126</td>
<td>132</td>
<td>165</td>
<td>182</td>
<td>199</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td>0.44</td>
<td>0.67</td>
<td>1.12</td>
<td>2.21</td>
<td>3.51</td>
</tr>
<tr>
<td>Coupler Torque (Nm)</td>
<td></td>
<td>60</td>
<td>110</td>
<td>165</td>
<td>265</td>
<td>285</td>
</tr>
<tr>
<td>Locknut Torque (Nm)</td>
<td></td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Part No.</td>
<td></td>
<td>TTP12</td>
<td>TTP16</td>
<td>TTP20</td>
<td>TTP25</td>
<td>TTP32</td>
</tr>
</tbody>
</table>

Positional Coupler Dimensions

The female section of the positional coupler is normally cast flush in the concrete. The installer must take care to protect the internal threads and prevent the ingress of concrete. Once cast and ready to extend, the male end complete with locknut can be screwed into place.

Installation

Tapered Thread Positional Series

Position the continuation bar as near as possible to the coupler fitted to the cast-in bar.

Run the male component and locknut onto the continuation bar until fully engaged.
Using a torque wrench tighten the male component on the continuation bar to the specified torque, whilst holding the continuation bar with a second wrench.

Run the locknut along the threaded barrel of the male component to abut the female section. Using the torque wrench, tighten the locknut to the specified torque. Tightening torques are shown in the table opposite.

At this point the groove in the parallel threaded section of the male component must be completely covered by the locknut. If any part of the groove is visible beyond the locknut, the degree of adjustability has been exceeded and the installation is incorrect.

Correct Installation

- Groove is completely hidden within locknut

Incorrect Installation

- Groove is protruding from locknut
After casting of the concrete and when ready to extend, remove the plastic end cap from the coupler. Position the continuation bar in the sleeve and rotate the bar into the coupler. Continue to screw the bar into the coupler until tight.

To ensure correct installation, tighten the joint to the specified torque using a calibrated torque wrench on the continuation bar. Tightening torques are shown in the table below.

Transition Coupler

The Ancon Tapered Thread Transition coupler is used to join reinforcing bars of different diameters where one coupler can be rotated.

With all the benefits of the Standard range, Transition couplers are designed to achieve failure loads greater than 115% of the characteristic strength of the smaller diameter grade 500 reinforcing bar. The Transition coupler comprises an internally threaded sleeve with two right hand threads both of which are tapered towards the middle of the coupler. The diameter of each thread corresponds to the appropriate bar size. A nominal +25mm should be allowed per threaded bar end for square cutting the bar end.

Testing & Approvals

The Transition range of Tapered Thread couplers has been tested and approved by UK CARES to show compliance with the requirements of BS EN 1992-1-1: 2004 (Eurocode 2), BS 8110 and UK CARES TA1-B.

Transition Coupler Dimensions

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>12/16</th>
<th>16/20</th>
<th>20/25</th>
<th>25/32</th>
<th>32/40</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Dia. (mm)</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupler Length (mm)</td>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.21</td>
<td>0.30</td>
<td>0.48</td>
<td>1.11</td>
<td>1.62</td>
</tr>
<tr>
<td>Torque (Nm)</td>
<td>60/110</td>
<td>110/165</td>
<td>165/285</td>
<td>265/285</td>
<td>285/330</td>
</tr>
<tr>
<td>Part No.</td>
<td>TTT12/16</td>
<td>TTT16/20</td>
<td>TTT20/25</td>
<td>TTT25/32</td>
<td>TTT32/40</td>
</tr>
</tbody>
</table>

Testing & Approvals

The Transition range of Tapered Thread couplers has been tested and approved by UK CARES to show compliance with the requirements of BS EN 1992-1-1: 2004 (Eurocode 2), BS 8110 and UK CARES TA1-B.

Transition Coupler Dimensions

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>12/16</th>
<th>16/20</th>
<th>20/25</th>
<th>25/32</th>
<th>32/40</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Dia. (mm)</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupler Length (mm)</td>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.21</td>
<td>0.30</td>
<td>0.48</td>
<td>1.11</td>
<td>1.62</td>
</tr>
<tr>
<td>Torque (Nm)</td>
<td>60/110</td>
<td>110/165</td>
<td>165/285</td>
<td>265/285</td>
<td>285/330</td>
</tr>
<tr>
<td>Part No.</td>
<td>TTT12/16</td>
<td>TTT16/20</td>
<td>TTT20/25</td>
<td>TTT25/32</td>
<td>TTT32/40</td>
</tr>
</tbody>
</table>
Tapered Thread Weldable Couplers
Ancon Tapered Thread Weldable couplers provide a convenient means of connecting reinforcing bars to structural steel plates or sections. Shorter than the standard coupler, it has a tapered thread at one end. The other end is welded directly to the steel. The couplers are manufactured from either Steel Grade 1045 to ASTM A576 or Steel Grade C45R to EN10083.

The Tapered Thread Weldable coupler is suitable for welding to structural steels, Grade S275 or Grade S355. The load conditions at the connection must be determined by the designer along with the type and size of weld required. Another important consideration is the type of electrode to be used, which must be matched to the properties of the plate and tube, and to the site conditions under which the welding will be undertaken. Welders should be qualified for the type of weld required. As a minimum standard, welding of the couplers shall be in accordance with the guidance provided in the following documents:

- BS EN 287-1 Qualification test of welders, Fusion welding, Steels
- BS EN 9606-1:2013 Qualification testing of welders, Fusion welding, Steels

Carbon Equivalent Value - The Carbon Equivalent value of these couplers may typically vary between 0.50 – 0.75, where the carbon equivalent value is given by

\[CEV = C + (\text{Mn})/6 + (\text{Ni}+\text{Cu})/15 + (\text{Cr}+\text{Mo}+\text{V})/5 \]

For further assistance and technical information please contact us.

Installation
Tapered Thread Weldable Couplers

1. The coupler must first be welded to the steelwork.

2. When ready to extend, remove the plastic end cap and position the continuation bar into the sleeve.

3. Rotate the bar into the coupler until tight.

4. To ensure correct installation, tighten the joint to the specified torque using a calibrated torque wrench on the continuation bar. Tightening torques are shown in the table.

Weldable Coupler Dimensions

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Dia. (mm)</td>
<td>d</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>48</td>
<td>55</td>
</tr>
<tr>
<td>Coupler Length (mm)</td>
<td>l</td>
<td>35</td>
<td>42</td>
<td>47</td>
<td>57</td>
<td>72</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.11</td>
<td>0.18</td>
<td>0.26</td>
<td>0.63</td>
<td>0.97</td>
<td>1.37</td>
</tr>
<tr>
<td>Torque (Nm)</td>
<td>60</td>
<td>110</td>
<td>165</td>
<td>265</td>
<td>285</td>
<td>330</td>
</tr>
<tr>
<td>Part No.</td>
<td>TTW12</td>
<td>TTW16</td>
<td>TTW20</td>
<td>TTW25</td>
<td>TTW32</td>
<td>TTW40</td>
</tr>
</tbody>
</table>

For further assistance and technical information please contact us.
The Ancon threading machine provides a Threading Machine
Accessories

500 rebar and meets the requirements of designed to achieve failure loads in excess of construction by using another TTA adaptor can be achieved in the second phase fixture is removed, reinforcement continuity temporary fixtures to concrete. Once the It is particularly useful for connecting temporary fixtures to concrete. Once the fixture is removed, reinforcement continuity can be achieved in the second phase construction by using another TTA adaptor and central threaded stud. The TTA is designed to achieve failure loads in excess of 115% of the characteristic strength of grade 500 rebar and meets the requirements of BS EN 1992-1-1:2004 (Eurocode 2) and BS 8110 for mechanical splices.

Tapered Thread Parallel Thread Adaptors

The TTA Tapered Thread Parallel Thread Adaptor accepts a standard metric bolt or studding. It is particularly useful for connecting temporary fixtures to concrete. Once the fixture is removed, reinforcement continuity can be achieved in the second phase construction by using another TTA adaptor and central threaded stud. The TTA is designed to achieve failure loads in excess of 115% of the characteristic strength of grade 500 rebar and meets the requirements of BS EN 1992-1-1:2004 (Eurocode 2) and BS 8110 for mechanical splices.

Accessories

The Ancon threading machine provides a fast, simple and reliable threading operation. The machine is compact, making it completely portable and easy to locate. It is of a robust design to provide a long, low maintenance life. Threading machines are generally located in stockists’ yards. For larger projects our machines can be made available for hire. Please contact Leviat for further information. Training on the correct usage of the threading machine is provided by our technicians.

Machine Consumables

The following consumables are available:

Chaser Sets
Chaser sets are available on a regrindable or disposable basis. Each set can be reground up to 3 times in order to extend cutting life. Please contact us for details.

Coolant
We recommend the use of Pencool S900 Cutting Fluid or a similar water based coolant.

Thread Protectors
Plastic sleeves are available to protect the tapered threads on reinforcing bars.

Torque Wrenches
In order to ensure the correct assembly of tapered thread couplers the use of a calibrated torque wrench is essential. Details of wrenches are included in the table below. Each Ancon wrench is supplied with a certificate of calibration.

Torque Values (Nm)

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Coupler</td>
<td>60</td>
<td>110</td>
<td>165</td>
<td>265</td>
<td>285</td>
<td>330</td>
</tr>
<tr>
<td>Positional Coupler</td>
<td>60</td>
<td>110</td>
<td>165</td>
<td>265</td>
<td>285</td>
<td>330</td>
</tr>
<tr>
<td>Positional Locknut</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>70</td>
<td>90</td>
<td>110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>12/16</th>
<th>16/20</th>
<th>20/25</th>
<th>25/32</th>
<th>32/40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Coupler</td>
<td>60/110</td>
<td>110/165</td>
<td>165/265</td>
<td>265/285</td>
<td>285/330</td>
</tr>
</tbody>
</table>

Note: Where tapered thread headed anchors are used, the compressive strength of the concrete shall not be less than grade C32/40 (cylinder/cube).
BT Stainless Steel Couplers

The Ancon range of couplers is predominantly designed for the joining of carbon steel bars, however when stainless steel reinforcement is being used the Ancon BT-S coupler is ideal. These couplers are manufactured from 1.4462 duplex stainless steel for optimum strength and corrosion resistance. They are suitable for projects of any size where the strength of the connection is required to match or exceed that of the parent bars, including large scale, high volume coupler applications.

The end of each bar to be joined is cut square and enlarged by cold forging. This increases the core diameter of the bar to ensure that the joint is stronger than the bar. Parallel metric threads are formed onto the bar ends. The threaded end can be proof tested to a force equal to the characteristic yield strength of the bar.

The couplers are suitable for splicing BS 6744 Grade 500 stainless steel reinforcing bars. For further information please contact us.

BT-S Couplers

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Diameter (mm)</td>
<td>30</td>
<td>35</td>
<td>42</td>
<td>52</td>
<td>65</td>
</tr>
<tr>
<td>Coupler Length (mm)</td>
<td>40</td>
<td>48</td>
<td>60</td>
<td>72</td>
<td>90</td>
</tr>
<tr>
<td>Thread Form</td>
<td>M20 x 2.5</td>
<td>M24 x 3.0</td>
<td>M30 x 3.5</td>
<td>M36 x 4.0</td>
<td>M45 x 4.5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.14</td>
<td>0.22</td>
<td>0.37</td>
<td>0.72</td>
<td>1.37</td>
</tr>
<tr>
<td>Coupler Reference</td>
<td>BTS16</td>
<td>BTS20</td>
<td>BTS25</td>
<td>BTS32</td>
<td>BTS40</td>
</tr>
</tbody>
</table>

BT-S Locknuts

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Diameter (mm)</td>
<td>30</td>
<td>35</td>
<td>42</td>
<td>52</td>
<td>65</td>
</tr>
<tr>
<td>Locknut Length (mm)</td>
<td>13</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Thread Form</td>
<td>M20 x 2.5</td>
<td>M24 x 3.0</td>
<td>M30 x 3.5</td>
<td>M36 x 4.0</td>
<td>M45 x 4.5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.05</td>
<td>0.07</td>
<td>0.12</td>
<td>0.24</td>
<td>0.46</td>
</tr>
<tr>
<td>Coupler Reference</td>
<td>BTS16LN</td>
<td>BTS20LN</td>
<td>BTS25LN</td>
<td>BTS32LN</td>
<td>BTS40LN</td>
</tr>
</tbody>
</table>

BT Stainless Steel Type A

The Type A connection utilises an internally threaded coupler to join two cold-forged and threaded bar ends together. Each bar end is threaded to half the length of the coupler. Type A connections are used where the continuation bar can be rotated.

BT Stainless Steel Type B

The Type B connection utilises the same coupler as for the Type A, the difference being one bar end is threaded for the full coupler length. Type B connections are used where the continuation bar can be rotated for no more than one revolution.

BT Stainless Steel Type C

The Type C connection utilises the same coupler as for the Type A, together with locknuts and longer threads to the bar ends. Type C connections are used where the continuation bar cannot be rotated.
Reinforcing Bar Couplers

Bartec Plus

Bartec Plus couplers offer a full strength connection together with enhanced fatigue resistance, yet are the smallest in the Ancon range. They are suitable for projects of any size, including those requiring a high volume of couplers, such as road and rail bridges.

Each end of the rebar to be joined is cut square and enlarged using a cold forge process. A thread is then formed on the enlarged bar end using a thread rolling machine. The thread is such that the cross-sectional area of the bar ends are not reduced ensuring the strength of the connection matches or exceeds that of the parent bars.

Bartec Plus Type A

The Type A connection utilises an internally threaded coupler to join two cold-forged and thread-rolled bar ends together. Each bar end is threaded to half the length of the coupler. It is the combination of these processes that provide the connection with enhanced fatigue resistance.

Types A and C, in the bar diameters below, are compliant with BS 8597:2015.

Ancon Bartec Plus Type A Standard Couplers in the size range 12mm to 40mm and Type C Positional Couplers in the size range 12mm to 40mm have been evaluated by UK CARES Technical Approval TA1-A for use as follows:

Type A connections use an internal plastic cap to protect the thread in the coupler. In cases such as deep concrete pours, additional protection may be required to prevent the ingress of concrete fines. For 40mm Type C connections, the diameter of the locknuts will be marginally smaller than that of the BTP40 coupler.

It is the application of the rolled thread that differentiates Bartec Plus from other threaded rebar systems. Each thread-rolled bar end is proof-loaded to a force equal to the characteristic yield strength of the rebar.

Bartec Plus Type B

The Type B connection utilises the same coupler as for the Type A, the difference being one bar end is threaded for the full coupler length. Type B connections are used where the continuation bar can be rotated for no more than one revolution.

Bartec Plus Type C

The Type C connection utilises the same coupler as for the Type A, together with locknuts and longer threads to the bar ends. Type C connections are used where the continuation bar cannot be rotated.

It is the combination of these processes that provide the connection with enhanced fatigue resistance.

Types A and C, in the bar diameters below, are compliant with BS 8597: 2015.

Bartec Plus couplers offer a full strength connection together with enhanced fatigue resistance, yet are the smallest in the Ancon range. They are suitable for projects of any size, including those requiring a high volume of couplers, such as road and rail bridges.
Installation

Bartec Plus Type A

1. Run the coupler to the end of the thread on the fixed bar.

2. Remove the plastic cap from the coupler. Position and rotate the continuation bar in the coupler.

3. Tighten the joint using a wrench on the continuation bar.

Bartec Plus Type B

1. Run the coupler to the end of the thread on the continuation bar.

2. Position the continuation bar with the coupler against the end of the fixed bar.

3. Run the coupler from the continuation bar onto the fixed bar.

4. Tighten the joint using a wrench on the continuation bar.
Reinforcing Bar Couplers

Installation
Bartec Plus Type C

1. Run the locknut onto the fixed bar.

2. Run the second locknut followed by the coupler to the end of the thread on the continuation bar.

3. Position the continuation bar with the coupler against the end of the fixed bar.

4. Run the coupler from the continuation bar onto the fixed bar and using a wrench lock tight against the locknut.

5. Run the locknut along the continuation bar to abut the coupler and lock tight with a wrench.
Bartec Plus Transition Couplers

Bartec Plus couplers can be used to connect reinforcing bars of differing diameters, developing the full tensile strength of the smaller diameter bar together with the enhanced fatigue resistance.

For transition connections, only the smaller diameter bar end is enlarged and thread-rolled. The larger diameter bar is simply skimmed and thread-rolled with the same thread form as applied to the smaller diameter bar, excluding the 32mm to 40mm connection. Refer to the table for thread and coupler details.

The threads are such that the cross-sectional area of the bar ends are not reduced beyond that of the smaller diameter bar, thus ensuring the strength of the connection matches or exceeds that of the smaller bar.

As with Bartec Plus standard coupler systems, each enlarged and thread-rolled bar end is proof-loaded to a force equal to the characteristic yield strength of the rebar. It is the combination of these processes that provide the connection with an enhanced fatigue resistance.

Type A connections use an internal plastic cap to protect the thread in the coupler. In cases such as deep concrete pours, additional protection maybe required to prevent the ingress of concrete fines. For 40mm Type C connections, the diameter of the locknuts will be marginally smaller than that of the BTP40 coupler.

Bartec Plus Transition Couplers

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>12/16</th>
<th>16/20</th>
<th>20/25</th>
<th>25/32</th>
<th>32/40</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Diameter (mm)</td>
<td>d</td>
<td>20.6</td>
<td>26.4</td>
<td>32.1</td>
<td>40.1</td>
</tr>
<tr>
<td>Coupler Length (mm)</td>
<td>2t</td>
<td>29</td>
<td>40</td>
<td>49</td>
<td>60</td>
</tr>
<tr>
<td>Thread Form</td>
<td>M14x2.0</td>
<td>M20x2.5</td>
<td>M24x3.0</td>
<td>M30x3.5</td>
<td>M36x4.0</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.05</td>
<td>0.08</td>
<td>0.16</td>
<td>0.31</td>
<td>0.67</td>
</tr>
<tr>
<td>Coupler Reference</td>
<td>BTP12</td>
<td>BTP16</td>
<td>BTP20</td>
<td>BTP25</td>
<td>BTP32/40</td>
</tr>
</tbody>
</table>

Other sizes are available on request. Contact us for more details. Thread incompatible with standard metric bolts/studs.

Bartec Plus Transition Locknuts

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>12/16</th>
<th>16/20</th>
<th>20/25</th>
<th>25/32</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Diameter (mm)</td>
<td>20.6</td>
<td>26.4</td>
<td>32.1</td>
<td>40.1</td>
<td>49.5</td>
<td>53</td>
</tr>
<tr>
<td>Locknut Length (mm)</td>
<td>26</td>
<td>13</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Thread Form</td>
<td>M14x2.0</td>
<td>M20x2.5</td>
<td>M24x3.0</td>
<td>M30x3.5</td>
<td>M36x4.0</td>
<td>M40x4.0</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.02</td>
<td>0.04</td>
<td>0.05</td>
<td>0.10</td>
<td>0.19</td>
<td>0.26</td>
</tr>
<tr>
<td>Locknut Reference</td>
<td>BTP12LN</td>
<td>BTP16LN</td>
<td>BTP20LN</td>
<td>BTP25LN</td>
<td>BTP32LN</td>
<td>BTP40LN</td>
</tr>
</tbody>
</table>

Other sizes are available on request. Contact us for more details. Thread incompatible with standard metric bolts/studs.

Bartec Plus Transition Type A

The Type A connection utilises an internally threaded coupler to join two cold-forged and thread-rolled bar ends together. Each bar end is threaded to half the length of the coupler. Type A connections are used where the continuation bar can be rotated.

Bartec Plus Transition Type B

The Type B connection utilises the same coupler as for the Type A, the difference being one bar end is threaded for the full coupler length. It is usual to rotate the coupler from the smaller diameter rebar onto the larger. Type B connections are used where the continuation bar can be rotated for no more than one revolution.

Bartec Plus Transition Type C

The Type C connection utilises the same coupler as for the Type A, together with two locknuts and longer threads on the bar ends. It is usual to rotate the coupler from the smaller diameter rebar onto the larger. Type C connections are used where the continuation bar cannot be rotated.

*This detail is to be used with micro-alloy / through hardened rebar only, as threading directly onto rebar produced using the quench and temper or thermo-mechanically-treated methods may result in a disproportionate loss of strength.
Reinforcing Bar Couplers

Installation
Bartec Plus Transition Type A

1. Position the continuation bar with the coupler against the end of the larger diameter bar.
2. Rotate the coupler from the smaller diameter bar to engage against the rear of the thread on the opposing bar and lock tight with a wrench.
3. Run the coupler to the end of the thread on the fixed bar.
4. Remove the plastic cap from the coupler. Position and rotate the continuation bar in the coupler.
5. Tighten the joint using a wrench on the continuation bar.

Bartec Plus Transition Type B

1. Screw the coupler to fully engage on the long thread of the smaller diameter bar.
2. Position the continuation bar with the coupler against the end of the larger diameter bar.
3. Rotate the coupler from the smaller diameter bar to engage against the rear of the thread on the opposing bar and lock tight with a wrench.
4. Using a wrench, rotate the continuation bar to lock the two bar ends against each other within the coupler. After tightening, the length of exposed thread should be no more than half of the coupler length plus 2-4mm depending on the diameter of the rebar.
Screw the locknut to engage on the rear of the thread on the larger diameter bar and tighten using a wrench.

Screw the locknut followed by the coupler to fully engage on the long thread of the smaller diameter bar.

Position the smaller diameter bar with the coupler against the end of the larger diameter bar.

Rotate the coupler from the smaller diameter bar and using a wrench, lock tight against the locknut on the larger diameter rebar.

Rotate the locknut on the smaller diameter rebar and using a wrench, lock tight against the coupler.

Installation

Bartec Plus Transition Type C
Reinforcing Bar Couplers

Bartec Plus Weldable Couplers

Bartec Plus welded couplers provide a convenient means of connecting reinforcing bars to structural steel plates or sections. One end has the Bartec Plus thread form; the other end is prepared for welding to the steel.

The coupler is suitable for welding to structural steels EN BS 10025, Grade S275 (43A) or Grade S355 (Grade 50B), however the load conditions at the connection must be determined by the designer responsible for this structural element, along with the type and size of weld required. Other important considerations are the type of electrode to be used, which must be matched to the properties of the plate and tube, and to the site conditions under which the welding will be undertaken. Welders should be qualified for the type of weld required.

As a minimum standard, welding of the couplers shall be in accordance with the guidance provided in the following documents:

- BS EN 287-1 Qualification test of welders, Fusion welding, Steels
- BS EN 9606-1:2013 Qualification testing of welders, Fusion welding, Steels

Bartec Plus Weldable Couplers are manufactured from either Steel Grade 1045 to ASTM A576 or Steel Grade C45R to EN10083.

Carbon Equivalent Value - The Carbon Equivalent value of these couplers may typically vary between 0.50 – 0.75, where the carbon equivalent value is given by:
\[CEV = C + \frac{(Mn)}{6} + \frac{(Ni+Cu)}{15} + \frac{(Cr+Mo+V)}{5} \]

Installation Bartec Plus Weldable Couplers

1. The coupler must first be welded to the steelwork.
2. When ready to extend, remove the plastic end cap and position the continuation bar into the sleeve.
3. Rotate the bar into the coupler until tight.
4. Tightening the continuation bar using a wrench.

Bartec Plus Weldable Couplers

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupler Diameter (mm)</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupler Length (mm)</td>
<td>l</td>
<td>28</td>
<td>33</td>
<td>38</td>
<td>48</td>
<td>57</td>
</tr>
<tr>
<td>Thread Form</td>
<td>M14x2.0</td>
<td>M20x2.5</td>
<td>M24x3.0</td>
<td>M30x3.5</td>
<td>M36x4.0</td>
<td>M45x4.5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.1</td>
<td>0.16</td>
<td>0.30</td>
<td>0.58</td>
<td>0.96</td>
<td>1.91</td>
</tr>
<tr>
<td>Coupler Reference</td>
<td>BTP12W</td>
<td>BTP16W</td>
<td>BTP20W</td>
<td>BTP25W</td>
<td>BTP30W</td>
<td>BTP40W</td>
</tr>
</tbody>
</table>

Note: Thread incompatible with standard metric bolt/stud.
Anchorage of reinforcement within a concrete section is traditionally achieved by means of creating a long hooked end to the bar. These hooks can lead to problems when positioning the bar and can increase congestion. It can ultimately result in larger than necessary concrete sections at the location of hooked ends.

The Bartec Plus Headed Anchor is essentially an oversized coupler capable of carrying the full tension load of the bar when it bears against the concrete in which it is cast. The Headed Anchor removes the need for the hooked rebar end and subsequently reduces congestion, simplifying bar placement. This in turn increases the speed of construction and gives greater flexibility in design. Typical applications include pile caps and beam-to-column connections.

To attach the Headed Anchor to the rebar, it is first necessary to enlarge the bar end and then form the thread on the enlarged bar end using a thread rolling machine. As with the conventional coupler connection, the thread is such that the cross-sectional area of the bar end is not reduced, thus ensuring the strength of the connection matches or exceeds that of the parent bar.

Bartec Plus Headed Anchors

The Bartec Plus Headed Anchor provides an effective and proven method of achieving rebar end anchorage within concrete.

Bartec Plus Headed Anchors

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Diameter (mm)</td>
<td>d</td>
<td>40</td>
<td>50</td>
<td>65</td>
<td>80</td>
<td>110</td>
</tr>
<tr>
<td>Anchor Thickness (mm)</td>
<td>f</td>
<td>15</td>
<td>20</td>
<td>24</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>Thread Form</td>
<td>M14x2.0</td>
<td>M20x2.0</td>
<td>M24x3.0</td>
<td>M30x3.5</td>
<td>M36x4.0</td>
<td>M45x4.5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.13</td>
<td>0.27</td>
<td>0.56</td>
<td>1.03</td>
<td>2.43</td>
<td>4.55</td>
</tr>
<tr>
<td>Anchor Reference</td>
<td>BTP12HA</td>
<td>BTP16HA</td>
<td>BTP20HA</td>
<td>BTP25HA</td>
<td>BTP32HA</td>
<td>BTP40HA</td>
</tr>
</tbody>
</table>

Other sizes are available on request. Contact us for more details. Thread incompatible with standard metric bolts/studs.

Concrete Strength

When the above sizes of Bartec Plus Headed Anchors are used, the compressive strength of the concrete shall not be less than strength grade C32/40 (cylinder/cube). Where required, Headed Anchors can be supplied to a larger diameter than shown above.
Reinforcing Bar Couplers

MBT
The MBT range of couplers provides a cost-effective method of joining reinforcing bars, particularly when the fixed bar is already in place and there is insufficient space for a hydraulic swaging press.

MBT Couplers are easy to install and achieve failure loads higher than 115% of the characteristic yield strength of grade 500 reinforcing bar. Neither bar end preparation to form threads, nor bar rotation are required. MBT couplers can also be used to join imperial, plain round or deformed reinforcing bars.

The bar ends are supported within the coupler by two serrated saddles, and as the lockshear bolts are tightened, the conical ends embed themselves into the bar. As this happens the serrated saddles bite into both the bar and the shell of the coupler. The lockshear bolts of couplers up to and including the ET20 can be tightened using a ratchet wrench. For larger couplers a nut runner is recommended.

In all cases heavy duty sockets should be used. When the pre-determined tightening torque for the bolts is reached, the heads shear off leaving the top of the installed bolt slightly proud of the coupler. This provides an instant visual check of correct installation.

Note: Impact tools must not be used to tighten lockshear bolts.

MBT ET Series
The MBT ET series of couplers is used to connect reinforcing bars of the same size.

Testing & Approvals
Full destructive tests are carried out on selected couplers from our stocks. MBT couplers are designed and manufactured in accordance with BS EN ISO 9001. The most common sizes of ET series couplers are approved by HAPAS (Highway Authorities Product Approval Scheme) covered by certificate 15/H240 issued by the BBA, including the bar sizes featured in the table below. This range also complies with BS 8597: 2015.

MBT ET Series Dimensions

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Diameter (mm)</td>
<td>d</td>
<td>33.4</td>
<td>42.2</td>
<td>48.3</td>
<td>54.0</td>
<td>71.0</td>
</tr>
<tr>
<td>Total Length (mm)</td>
<td>l</td>
<td>140</td>
<td>160</td>
<td>204</td>
<td>258</td>
<td>312</td>
</tr>
<tr>
<td>Socket Size A/F (ins)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>5/8</td>
<td>3/4</td>
</tr>
<tr>
<td>No. of Bolts</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Approx Weight (kg)</td>
<td>0.72</td>
<td>1.25</td>
<td>1.96</td>
<td>3.00</td>
<td>6.50</td>
<td>11.30</td>
</tr>
<tr>
<td>Torque (Nm)</td>
<td>55</td>
<td>108</td>
<td>108</td>
<td>275</td>
<td>360</td>
<td>525</td>
</tr>
<tr>
<td>Part No.</td>
<td>ET12</td>
<td>ET16</td>
<td>ET20</td>
<td>ET25</td>
<td>ET32</td>
<td>ET40</td>
</tr>
</tbody>
</table>

Note: Other sizes available on request. For details contact us.

Installation

MBT ET Series

1. Place the coupler over the end of the bar to half the coupler length +/- 6mm and finger tighten the lockshear bolts onto the bar. Check the alignment and make any necessary adjustments.

2. Place the other bar end into the coupler until it pushes up against the first bar and finger tighten the remaining lockshear bolts. Check alignment and make any adjustments.

3. On one half of the coupler, starting from the centre and working outwards, partly tighten the lockshear bolts using either a ratchet wrench or a nut runner as appropriate. Do not use impact tools. Repeat again, this time fully tightening the lockshear bolts until the bolt heads shear off. Repeat the above for the other half of the coupler.
MBT Transition Series

The MBT Transition series of couplers provides an effective solution for connecting bars of different diameters.

Transition couplers have all of the benefits of the ET series and are designed to achieve failure loads higher than 115% of the characteristic yield strength of the smaller grade 500 reinforcing bar.

They can be installed without any preparation to the bar ends and without any need to rotate bars.

The coupler can be rotated to allow access to the bolts for tightening with either a ratchet wrench or a nut runner. In all cases heavy duty sockets should be used.

Note: Impact tools should not be used to tighten lockshear bolts.

MBT Transition Series Dimensions

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>16/12</th>
<th>20/12</th>
<th>20/16</th>
<th>25/16</th>
<th>25/20</th>
<th>32/20</th>
<th>32/25</th>
<th>40/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>42.2</td>
<td>48.3</td>
<td>48.3</td>
<td>54.0</td>
<td>54.0</td>
<td>71.0</td>
<td>71.0</td>
<td>81.0</td>
</tr>
<tr>
<td>d2</td>
<td>26.4</td>
<td>33.4</td>
<td>48.3</td>
<td>42.2</td>
<td>54.0</td>
<td>48.3</td>
<td>54.0</td>
<td>71.0</td>
</tr>
<tr>
<td>Total Length (mm)</td>
<td>160</td>
<td>150</td>
<td>160</td>
<td>155</td>
<td>180</td>
<td>177</td>
<td>231</td>
<td>335</td>
</tr>
<tr>
<td>No. of Bolts</td>
<td>a:b</td>
<td>3:3</td>
<td>3:3</td>
<td>3:3</td>
<td>2:3</td>
<td>3:3</td>
<td>2:4</td>
<td>3:4</td>
</tr>
<tr>
<td>Approx Weight (kg)</td>
<td>1.30</td>
<td>1.13</td>
<td>1.56</td>
<td>1.51</td>
<td>2.23</td>
<td>2.55</td>
<td>3.70</td>
<td>7.47</td>
</tr>
<tr>
<td>Part No.</td>
<td>ET16/12</td>
<td>ET20/12</td>
<td>ET20/16</td>
<td>ET25/16</td>
<td>ET25/20</td>
<td>ET32/20</td>
<td>ET32/25</td>
<td>ET40/32</td>
</tr>
</tbody>
</table>

Installation

MBT Transition Series

1. Place the coupler over the end of the bar to the appropriate depth +/- 6mm and finger tighten the lockshear bolts onto the bar. Check the alignment and make any necessary adjustments.

2. Place the other bar end into the coupler until it pushes up against the first bar and finger tighten the remaining lockshear bolts. Check alignment and make any adjustments.

3. On one half of the coupler, starting from the centre and working outwards, partly tighten the lockshear bolts using either a ratchet wrench or a nut runner as appropriate. Do not use impact tools. Repeat again, this time fully tightening the lockshear bolts until the bolt heads shear off. Repeat the above for the other half of the coupler.

Electric Wrench

Ancon Electric Wrenches are available for purchase or hire. The smooth continuous action of the wrench prevents the early shearing of the lockshear bolts and damage to threads. The wrench is supplied with specially hardened heavy duty sockets. For details please contact Leviat.
Reinforcing Bar Couplers

MBT Continuity C Series
The MBT Continuity coupler allows reinforcement to be extended at construction joints without the need to drill or otherwise substantially deface the formwork.

The female part of the C Series coupler is fixed to the formwork with the aid of a nail plate. After removal of the formwork, the nail plate protects the internally threaded end of the coupler. It is advisable to loosen the nail plate to break the bond with the concrete whilst it is still ‘green’. When the nail plate is removed, the male section can be screwed into the existing section of the coupler.

Additional locknuts are used to secure the connection.

Installation
MBT Continuity C Series

1. Fix the nail plate to the formwork and fully screw the female component onto the plate. Insert the bar into the coupler, ensuring that it does not encroach into the threaded section. Finger tighten the lockshear bolts. Check alignment and make any adjustments.

2. Starting from the nail plate end and working outwards, partly tighten the lockshear bolts using either a ratchet wrench or a nut runner as appropriate. Do not use impact tools. Repeat again, this time fully tightening the lockshear bolts until the bolt heads shear off. Cast in concrete.

3. Remove the formwork and unscrew the nail plate. The male component can now be fully screwed into the fixed female component. The male component can be rotated up to a full turn to allow the bolts to be located in an accessible position for tightening.

4. Run the locknut along the threaded male stud to abut the female component. Fully tighten the locknut against the female section using a wrench.

5. Place the continuation bar into the male component and finger tighten the bolts. Check alignment and make any adjustments. Starting from the centre and working outwards, partly tighten the lockshear bolts using either a ratchet wrench or a nut runner as appropriate. Do not use impact tools. Repeat again, this time fully tightening the lockshear bolts until the bolt heads shear off. Fully tighten the locknut.

Note: When the coupler is fully assembled the visible threaded stud between the two locknuts must not exceed 20mm.

Note: The Continuity Coupler male component will be delivered with the threaded stud already in place and the locknuts located on the threaded stud. If the female component is to be left in situ for an extended period, the threads must be greased to prevent corrosion.

Bar Diameter (mm)	12	16	20	25	32	40
External Diameter (mm) | d | 33.4 | 42.2 | 48.3 | 54.0 | 71.0 | 81.0
Maximum Length (mm) | f | 250 | 280 | 349 | 414 | 490 | 675
Female Component Length (mm) | a | 100 | 115 | 147 | 177 | 214 | 300
Threaded Section (mm) | c | 30 | 35 | 38 | 43 | 53 | 53
Socket Size A/F (ins) | | 1/4 | 1/4 | 1/4 | 5/8 | 5/8 | 3/4
No. of Bolts | 6 | 6 | 8 | 8 | 10 | 14
Nail Plate Diameter x Thickness (mm) | 75 x 5 | 75 x 5 | 75 x 5 | 100 x 5 | 100 x 5 | 127 x 5
Approx Weight (kg) | 1.40 | 2.20 | 3.70 | 5.15 | 11.5 | 18.8
Torque (Nm) | 55 | 108 | 275 | 360 | 525
Part No. | C12 | C16 | C20 | C25 | C32 | C40
Repair and Remedial Work
The MBT range of couplers is ideal for applications involving the replacement of corroded or damaged reinforcement as bar ends require no preparation or rotation.

MBT ET Couplers
When two MBT ET type couplers are used, the replacement bar is cut approximately 5mm shorter than the original length to allow clearance for insertion between the sound ends of the in-situ bars. MBT ET couplers are pushed fully over both ends of the replacement bar and temporarily held in position. The replacement bar is then correctly positioned and the couplers moved to a previously marked position on the existing bars indicating half the length of the coupler. The lockshear bolts are tightened to complete the installation.

The above application is suitable where the bar being replaced is at least 2 x MBT ET coupler length (see page 22) + 100mm.

MBT Continuity C Series Gap Closer
A smaller section of bar can be removed and replaced by an MBT Continuity C Series coupler. The central threaded stud can be modified to suit the gap. The table provides the minimum bar length (dimension A) and minimum concrete pocket length (dimension B) to be cut away to facilitate this solution.

Installation
Bar replacement using MBT Continuity C Series Gap Closer

1. Orientate so threaded sections face inwards and pass the two halves of the continuity coupler over the opposing bar ends to leave the gap visible.

2. Insert appropriately sized stud in the gap and rotate each half of the coupler so the stud locates fully in each internal thread.

3. Tighten locknuts against the couplers. Shear bolt heads to complete installation by starting from the centre and working outwards and partly tightening the lockshear bolts using either a ratchet wrench or a nut runner as appropriate. Do not use impact tools. Repeat again, this time fully tightening the lockshear bolts.

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>Minimum Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>115</td>
</tr>
<tr>
<td>20</td>
<td>147</td>
</tr>
<tr>
<td>25</td>
<td>177</td>
</tr>
<tr>
<td>32</td>
<td>214</td>
</tr>
<tr>
<td>40</td>
<td>300</td>
</tr>
</tbody>
</table>
Reinforcing Bar Couplers

MBT Headed Anchors

MBT Headed Anchors are designed to provide dead end embedment for bars in concrete. This helps to reduce congestion and simplify the placement of rebars by removing the need for hooked ends.

The anchor comprises half an MBT coupler with a plate welded to one end which carries the full tension load of the bar when it is bearing against the concrete. Plates can be supplied with or without a hole, allowing bars to either end in the coupler or pass through. The MBT Headed Anchor also has the added advantage of requiring no special bar end preparation.

<table>
<thead>
<tr>
<th>Bar Diameter (mm)</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Diameter (mm)</td>
<td>d</td>
<td>33.4</td>
<td>42.2</td>
<td>48.3</td>
<td>54.0</td>
<td>71.0</td>
</tr>
<tr>
<td>Coupler Length (mm)</td>
<td>l</td>
<td>75</td>
<td>82</td>
<td>104</td>
<td>129</td>
<td>156</td>
</tr>
<tr>
<td>Total Length (mm)</td>
<td>l_o</td>
<td>85</td>
<td>92</td>
<td>114</td>
<td>139</td>
<td>171</td>
</tr>
<tr>
<td>Plate Thickness (mm)</td>
<td>t</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Plate w x h (mm)</td>
<td>p</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>130</td>
</tr>
<tr>
<td>No of Bolts</td>
<td>r</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Approx Weight (kg)</td>
<td>s</td>
<td>0.74</td>
<td>1.07</td>
<td>1.58</td>
<td>2.29</td>
<td>4.72</td>
</tr>
<tr>
<td>Torque (Nm)</td>
<td>t</td>
<td>55</td>
<td>108</td>
<td>108</td>
<td>275</td>
<td>360</td>
</tr>
<tr>
<td>Part No. (No hole in plate)</td>
<td>ETHA12</td>
<td>ETHA16</td>
<td>ETHA20</td>
<td>ETHA25</td>
<td>ETHA32</td>
<td>ETHA40</td>
</tr>
<tr>
<td>Part No. (Hole in plate)</td>
<td>ETHA12H</td>
<td>ETHA16H</td>
<td>ETHA20H</td>
<td>ETHA25H</td>
<td>ETHA32H</td>
<td>ETHA40H</td>
</tr>
</tbody>
</table>

Note: Minimum compressive strength of concrete 25/mm². Other sizes are available on request.
Other Ancon Products

Reinforcement Continuity Systems
Reinforcement Continuity Systems are an increasingly popular means of maintaining continuity of reinforcement at construction joints in concrete. The Ancon Eazistrip re-bend system is approved by UK CARES and consists of pre-bent bars housed within a galvanised steel casing. Once installed, the bars are straightened ready for lapping with slab reinforcement. Ancon KSN Anchors and Ancon Starter Bars are cast into a concrete wall and accept threaded continuation bars. They easily accommodate long EC2 lap lengths and eliminate the need for on-site bar straightening. KSN Anchors minimise rebar congestion in the wall.

Shear Load Connectors
Ancon DSD and ESD Shear Load Connectors are used to transfer shear across expansion and contraction joints in concrete. They are more effective at transferring load and allowing movement to take place than standard dowels. The range features rectangular box section sleeves to allow lateral movement in addition to longitudinal movement. A range of Lockable Dowels is available for temporary movement joints in post-tensioned concrete.

Channel and Bolt Fixings
We offer a wide range of channels and bolts in order to fix stainless steel masonry support, restraints and windposts to structural frames. Cast-in channels and expansion bolts are used for fixing to the edges of concrete floors and beams.

Punching Shear Reinforcement
Ancon Shearfix is used within a slab to provide additional reinforcement from punching shear around columns. The system is approved by UK CARES and consists of double-headed steel studs welded to flat rails. Shearfix is designed to suit the load conditions and slab depth at each column using free calculation software from us.

Insulated Balcony Connections
Ancon thermally insulated connectors minimise heat loss at balcony locations while maintaining structural integrity. They provide a thermal break and, as a critical structural component, transfer moment, shear, tension and compression forces. Standard solutions are available for concrete-to-concrete, steel-to-concrete and steel-to-steel interfaces.

HM Grout Sleeve Couplers
Ancon HM Grout Sleeves have been designed to cater for the rebar tolerance/bar alignment issues associated with joining precast concrete elements together.

The range comprises two standard coupler types: Full-grout sleeves and Half-grout sleeves. In the first, bars are simply inserted to meet at the nominal centre point of the sleeve. In the latter, one end features a threaded insert to accept a pre-threaded bar while the other end is open to accommodate a non-threaded continuation bar. The standard insert suits Ancon Bartec Plus parallel-threaded rebars. Other inserts are available.

These couplers are machined from seamless high strength steel tube and used with our high performance, shrinkage-compensated, cementitious grout.

Tests show compliance with the rebar coupler performance specifications in BS 8597 and ISO 15835.

Contact us for full technical details or download the product brochure online.
Innovative engineered products and construction solutions that allow the industry to build safer, stronger and faster.
Worldwide contacts for Leviat:

Australia
Leviat
98 Kurrajong Avenue,
Mount Druitt NSW 2770
Tel: +61 - 2 8808 3100
Email: info.au@leviat.com

Austria
Leviat
Leonard-Bernstein-Str. 10
Saturn Tower, 1220 Wien
Tel: +43 - 1 - 259 6770
Email: info.at@leviat.com

Belgium
Leviat
Industrielaan 2
1700 Tornat
Tel: +32 - 2 - 582 29 45
Email: info.be@leviat.com

China
Leviat
Room 601 Tower D, Vantone Centre
No. A6 Chao Yang Men Wai Street
Chaoyang District
Beijing · P.R. China 100020
Tel: +86 - 10 5907 3200
Email: info.cn@leviat.com

Czech Republic
Leviat
Business Center Šafránkova
Šafránkova 1238/1
155 00 Praha 5
Tel: +420 - 311 - 690 060
Email: info.cz@leviat.com

Finland
Leviat
Vädursgatan 5
412 50 Göteborg / Sweden
Tel: +358 (0)10 6338781
Email: info.fi@leviat.com

France
Leviat
6, Rue de Cabanis
FR 31240 L’Union
Toulouse
Tel: +33 - 5 - 34 25 54 82
Email: info.fr@leviat.com

Germany
Leviat
Liebigstrasse 14
40764 Langenfeld
Tel: +49 - 2173 - 970 - 0
Email: info.de@leviat.com

India
Leviat
309, 3rd Floor, Orion Business Park
Ghodbunder Road, Kapurbawdi,
Thane West, Thane,
Maharashtra 400607
Tel: +91 - 22 2589 2032
Email: info.in@leviat.com

Italy
Leviat
Via F.lli Bronzetti 28
24124 Bergamo
Tel: +39 - 035 - 0760711
Email: info.it@leviat.com

Malaysia
Leviat
28 Jalan Anggerik Mokara 31/59
Kota Kemuning, 40460 Shah Alam
Selangor
Tel: +603 - 5122 4182
Email: info.my@leviat.com

Netherlands
Leviat
Oostermaat 3
7623 CS Borne
Tel: +31 - 74 - 267 14 49
Email: info.nl@leviat.com

New Zealand
Leviat
2/19 Nuttall Drive, Hillsborough,
Christchurch 8022
Tel: +64 - 3 376 5205
Email: info.nz@leviat.com

Norway
Leviat
Vestre Svanholmen 5
4313 Sandnes
Tel: +47 - 51 82 34 00
Email: info.no@leviat.com

Philippines
Leviat
2933 Regus, Joy Nostalg,
ADB Avenue
Ortigas Center
Pasig City
Tel: +63 - 2 7957 6381
Email: info.ph@leviat.com

Poland
Leviat
UL. Obornicka 287
60-691 Poznan
Tel: +48 - 61 - 622 14 14
Email: info.pl@leviat.com

Singapore
Leviat
14 Benoi Crescent
Singapore 629977
Tel: +65 - 6266 6802
Email: info.sg@leviat.com

Spain
Leviat
Poligono Industrial Santa Ana
C/ Ignacio Zuloaga, 20
28522 Rivas-Vaciamadrid
Tel: +34 - 91 632 18 40
Email: info.es@leviat.com

Sweden
Leviat
Vädursgatan 5
412 50 Göteborg
Tel: +46 - 31 - 98 58 00
Email: info.se@leviat.com

Switzerland
Leviat
Grenzstrasse 24
3250 Lyss
Tel: +41 - 31 750 3030
Email: info.ch@leviat.com

United Kingdom
Leviat
President Way, President Park,
Sheffield, S4 7UR
Tel: +44 - 114 275 5224
Email: info.uk@leviat.com

United States of America
Leviat
6467 S Falkenburg Rd.
Riverview, FL 33578
Tel: (800) 423-9140
Email: info.us@leviat.us

For countries not listed
Email: info@leviat.com

Notes regarding this catalogue
© Protected by copyright. The construction applications and details provided in this publication are indicative only. In every case, project working details should be entrusted to appropriately qualified and experienced persons. Whilst every care has been exercised in the preparation of this publication to ensure that any advice, recommendations or information is accurate, no liability or responsibility of any kind is accepted by Leviat for inaccuracies or printing errors. Technical and design changes are reserved. With a policy of continuous product development, Leviat reserves the right to modify product design and specification at any time.
For more information on these products, contact:

Leviat
President Way
President Park
Sheffield, S4 7UR
United Kingdom
Tel: +44 (0) 114 275 5224
Fax: +44 (0) 114 276 8543
Email: info.ancon.uk@leviat.com

For sales and technical enquiries:
Email: reinforcement.uk@leviat.com

Ancon.co.uk
Leviat.com