KSN Anchors Reinforcement Continuity System
for the Construction Industry

Enhanced Performance Loads in Slab-to-Wall Moment Connections
Under the Leviat brand, we have united the expertise, skills and resources of Ancon and its sister companies to create a world leader in fixing, connecting and anchoring technology.

The products you know and trust will remain an integral part of Leviat’s comprehensive brand and product portfolio. As Leviat, we can offer you an extended range of specialist products and services, greater technical expertise, a larger and more agile supply chain and better, faster innovation.

By bringing together CRH’s construction accessories family as one global organisation, we are better equipped to meet the needs of our customers, and the demands of construction projects, of any scale, anywhere in the world.

This is an exciting change. Join us on our journey.

Read more about Leviat at Leviat.com
Our product brands include:

Ancon
HALFEN
HELIFIX
ISEDIO
PLAKA

Leviat.com
KSN Anchors
Safer, faster, easier construction joints

Together, they allow engineers to design slab-to-wall connections without the restrictions on bar length and bar diameter of re-bend continuity systems or the awkward anchorage lengths demanded by reinforcing bar couplers.

KSN Anchors are cast into the concrete wall and, when the formwork and thread protection are removed, the reinforcing bars are simply screwed into the anchors.

This is a quicker, easier, and above all safer continuity system. It eliminates the drilling of formwork or concrete and the dangers associated with projecting bars and on site bar straightening. It replaces hooked bars and stirrups, simplifying bar scheduling and minimising congestion in the wall.

Unlike pull-out bar systems, there is virtually no restriction on continuation bar length and they are available in a greater choice of bar diameters.

In addition to their suitability for direct tensile applications, independent tests have verified an enhancement in the performance of KSN Anchors when used in slab-to-wall moment connections.

Contents

System Components, Details for Specifying and Ordering 4-5
System Performance, Bottom Anchorage Options 6-7
Key Design Considerations 8
Anchor Selection Examples 9
Direct Tensile Concrete Characteristic Loads 10-11
Tensile Concrete Characteristic Loads in Moment Connections 12-14
Design Considerations - Reinforcement Details, Bottom Anchor Design Guidance, Ductility Requirements, Corners, Shear Checks 15-19
Installation Procedure and Guidance on Cutting Anchor Carrier 20-22
Other Ancon Products 23

Design Software
Our free design program is available to download from www.ancon.co.uk to simplify the specification of KSN Anchors. This easy-to-use interactive software enables calculations for moment connections and tension only applications.

Traditional slab-to-wall construction joint
Drilling of formwork required, projecting reinforcing bars and congestion in the wall.

Re-bend continuity system
Box dimensions restrict bar length and diameter. On-site bar straightening required.

Reinforcing bar couplers

High performance, KSN Anchor system
Eliminates risks associated with on-site bar straightening

Virtually unlimited continuation bar length. Suitable for EC2 lap lengths

Standard components for ‘just-in-time’ site delivery, direct from stock

Simple to schedule. Fast to install

Easy visual check of correct bar engagement

No torquing required

Reduces reinforcement congestion. Ideal for thin walls

EC2 indented construction joint

Enhanced performance backed by test data

Design software available

Technical Approval TA 5061

Technical Approval

5061

CARES

BIM object available

Enhanced performance backed by test data

Enhanced performance backed by test data
Ancon KSN Anchors

Ancon KSN Anchors, in combination with Bartec Plus parallel-threaded reinforcing bars, simplify concrete slab-to-wall construction joints when compared to other continuity systems.

This quicker, easier and above all, safer system eliminates the need for on-site bar straightening and the drilling of formwork or concrete. The system replaces hooked anchorage bars and stirrups, thereby simplifying bar scheduling and minimising congestion in the wall. Suitable for wall thickness from 175mm.

Independent tests have verified enhancements in anchor performance in moment-resisting connections. This enhancement is specific to the KSN range. The system carries CARES Technical Approval TA 5061.

System Components

KSN Anchors

There are eight standard anchors in the KSN range. They are manufactured from highly reliable Cr-Mo alloy steel with a minimum 15% elongation. The head is formed by hot forging to minimise material usage and improve the strength characteristics. The anchor is subsequently machined to incorporate a standard metric Bartec thread. Independent tests have verified the direct pull out strength of these anchors (see pages 10 to 11) and also quantified the enhancement in performance of KSN Anchors when used in slab-to-wall moment connections (see pages 12 to 14).

KSN Anchor Dimensions

<table>
<thead>
<tr>
<th>Anchor Ref.</th>
<th>Nominal External Diameter (mm)</th>
<th>Metric Thread (mm)</th>
<th>Nominal Head Width (mm)</th>
<th>Nominal Head A/F (mm)</th>
<th>Anchor Length (mm)</th>
<th>Embedment h_{eff} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSN12S</td>
<td>22</td>
<td>M16 x 2.0</td>
<td>46</td>
<td>40</td>
<td>115</td>
<td>142</td>
</tr>
<tr>
<td>KSN12M</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>177</td>
</tr>
<tr>
<td>KSN16S</td>
<td>28</td>
<td>M20 x 2.5</td>
<td>61</td>
<td>53</td>
<td>130</td>
<td>157</td>
</tr>
<tr>
<td>KSN16M</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>160</td>
<td>187</td>
</tr>
<tr>
<td>KSN16L</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>190</td>
<td>217</td>
</tr>
<tr>
<td>KSN20S</td>
<td>32</td>
<td>M24 x 3.0</td>
<td>75</td>
<td>65</td>
<td>150</td>
<td>177</td>
</tr>
<tr>
<td>KSN20M</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>190</td>
<td>217</td>
</tr>
<tr>
<td>KSN20L</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>230</td>
<td>257</td>
</tr>
</tbody>
</table>

KSN Tapered Timber Anchor Carrier

KSN Anchors are delivered to site pre-assembled as independent rows of anchors fixed with countersunk socket head cap screws to the back of a tapered timber strip. The timber provides an additional 33mm of embedment to each KSN Anchor and, after removal, provides a shear key for the joint. By increasing the embedment depth, the capacity of a KSN Anchor is improved.

The timber features one coloured side to denote the upward facing edge when orientating it against formwork and a product label to identify it as either a top or a bottom row of anchors. Tape is provided on the front of the strip to protect the socket head from concrete ingress to facilitate easy removal. A formwork release agent should be applied to the timber on site.

Tapered timber strips simplify installation, create a shear key and increase anchor embedment.
Bartec Plus Continuation Bars

Unlike re-bend continuity systems where bar lengths are restricted to the box dimensions, there is virtually no restriction on continuation bar length with KSN Anchors.

Ancon KSN Anchors are designed for use with 12mm, 16mm and 20mm diameter grade B500B or B500C reinforcing bar, threaded with a Bartec Plus metric thread, supplied by us. The Bartec Plus system produces a full strength joint. The bar end is cut square and enlarged by cold forging. This increases the core diameter of the threaded portion of the bar to ensure that the strength of the bar is maintained. A parallel metric thread is rolled onto the enlarged bar end. A 12mm bar is provided with an M16 thread, a 16mm bar with an M20 thread and a 20mm bar with an M24 thread.

Bar lengths to BS EN 1992:1-1 (Eurocode 2) are given in the tables below.

Top Reinforcement to Eurocode 2

<table>
<thead>
<tr>
<th>Bar Diameter</th>
<th>Thread Size</th>
<th>EC2 Full Tension Lap* C32/40</th>
<th>Minimum Length L1 Required C32/40</th>
<th>Minimum Bar Length Required Good Bond</th>
<th>Minimum Bar Length Required Bad Bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>M16</td>
<td>630</td>
<td>688</td>
<td>16</td>
<td>705</td>
</tr>
<tr>
<td>16</td>
<td>M20</td>
<td>830</td>
<td>888</td>
<td>40</td>
<td>910</td>
</tr>
<tr>
<td>20</td>
<td>M24</td>
<td>1040</td>
<td>1098</td>
<td>24</td>
<td>1125</td>
</tr>
</tbody>
</table>

Dimensions in millimetres.

*Assumes contact lap ($a_2=1$) and 100% of bar lapped at one location.

Bottom Reinforcement to Eurocode 2

<table>
<thead>
<tr>
<th>Bar Diameter</th>
<th>Thread Size</th>
<th>EC2 Tension Lap* C32/40</th>
<th>Minimum Length L2 Required C32/40</th>
<th>Minimum Bar Length Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>M16</td>
<td>630</td>
<td>688</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>M20</td>
<td>830</td>
<td>888</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>M24</td>
<td>1040</td>
<td>1098</td>
<td>24</td>
</tr>
</tbody>
</table>

Dimensions in millimetres.

*Assumes contact lap ($a_2=1$) and 100% of bar lapped at one location.

Note: Good bond and bad bond conditions as defined in BS EN 1992-1-1 figure 8.2.

Specification Code

An Ancon KSN Anchor system can be specified using the following identification method:

Anchor Ref. / Horizontal Spacing (mm) / Anchor Position in Slab (TOP or BOTTOM) / Cover (mm)

* ego: KSN16S / 200 / TOP / 25

This is the reference for a KSN system comprising KSN16S anchors to be installed at 200mm horizontal spacing in the top of the slab, with 25mm cover to the reinforcement.
Ancon KSN Anchors

System Performance
Performance values for KSN Anchors are presented on pages 10 to 14 for two load applications and are based on comprehensive test data. A design program is available to download online.

Direct tensile concrete characteristic loads

The direct pull out strength of anchors embedded in concrete has been the subject of extensive research over many years. To determine the direct pull strength of KSN Anchors, we commissioned a test programme at Heriot Watt University, UK. The test results and subsequent analysis aligned closely with established formulas for the pull-out strength of anchors. The direct pull-out strength is based on a model with a breakout prism angle of approximately 35 degrees. See Fig A.

The tables on pages 10 to 14 assume that the close edge distances Cx and Cy are catered for by either (1) ensuring Cx and Cy are equal to or greater than 1.5 x h_{eff} or (2) local reinforcement is provided (see page 15). In addition, where moment connections are used, the top of the wall shall be at least three times the effective embedment of the anchor (h_{eff}) measured from the centre line of the anchor. If these conditions cannot be met, please contact Leviat.

Characteristic loads as per the CEB Design of Fastenings in Concrete:

\[N_{Rk,c} = k_1 \cdot f_{ck}^{0.5} \cdot h_{eff}^{1.5} \]

Where:
- \(N_{Rk,c} \) is the tension resistance of a single anchor remote from edge effects
- \(f_{ck}^{0.5} \) is the characteristic concrete cylinder compressive strength
- \(h_{eff} \) is the embedment depth of the anchor
- \(k_1 \) is an empirical coefficient
- \(k_1 = 12.5 \)

The equation becomes

Design resistance

\[N_{Rd,c} = k_1 \cdot f_{ck}^{0.5} \cdot h_{eff}^{1.5} / \gamma_{m,c} \]

with \(\gamma_{m,c} = 1.5 \) as per Eurocode 2.

Anchors Spacings
Although KSN Anchors are able to provide an anchorage that is equal to or greater than the characteristic yield strength of the reinforcing bars, this is dependent on their embedment and arrangement. The capacity of the anchors is reduced when the proximity of adjacent anchors or concrete edges affect the development of the full cone, as illustrated in Fig B. Load data for reduced anchor spacing is printed in the tables on pages 10 to 14.

To achieve the maximum anchor load, the required minimum spacing is three times the depth of the anchor \(h_{eff} \).

Fig A. Full Tensile Cone
Fig B. Reduced Spacings

Local reinforcement required when Cx or Cy is less than 1.5\(h_{eff}\)
From the tests conducted to determine the direct pull out capacities of KSN Anchors (see page 6), we identified a potential increase in anchor performance when the compression part of the moment couple lies within the pull out cone.

Although design procedures for the direct pull out strength of cast-in anchors are well established, existing procedures do not cover anchors within moment resisting connections, such as slab-to-wall applications. Therefore, we commissioned a further series of tests at Heriot Watt University to determine the degree of enhancement in concrete cone pull out capacity in typical slab-to-wall connections and establish a design method based on the results.

The tests verified an enhancement in concrete cone capacity, when the pull out failure surface is modified by the presence of an adjacent compression force from the concrete forming part of the couple. The results showed a significant enhancement in some cases; the enhancement being strongly influenced by the ratio of the depth of the embedment of the head of the anchor to the effective depth of the anchor in the slab h_{eff}/d.

An empirical expression has been derived for the strength of KSN Anchors where the concrete cone failure is modified by an adjacent compression reaction. Load data for KSN Anchors in moment resisting slab-to-wall connections is provided in the tables on pages 12 to 14.

The tests used KSN Anchors in the paired arrangement shown. The diagram illustrates how the pull out cone is modified by an adjacent compression zone.

The calculation model we have developed is compatible with guidance in the following documents:
- ACI 318-11: Building Code Requirements for Structural Concrete, American Concrete Institute, Appendix D: Anchoring to Concrete.
- DIN1045-1 Plain reinforced and prestressed concrete structures. Compliance with the safety concept of the code.

Bottom Anchorage Options

In the moment connection configuration, the tension at the joint is resisted by the top anchor and the compression by the concrete. However, part of the span bottom reinforcement needs to be anchored in the wall according to BS EN 1992:1-1 (Eurocode 2) Clause 9.3.1.2. This anchorage of bottom reinforcement may be provided using KSN Anchors, an Ancon Eazistrip reinforcement continuity system or an Ancon Coupler Box.
Key Design Considerations

Effective Embedment Depth
The range of Ancon KSN Anchors, sizes 12mm to 20mm, may be used with anchor effective embedment between 75mm and 260mm.

Concrete Conditions
The structural concrete compressive strength shall be in the range C32/40 to C50/60. The tables in this brochure are based on C32/40. Please contact Leviat for other concrete grades as the capacity of the system improves with an increase in concrete strength.

The concrete in which KSN Anchors are embedded should be uncracked. This is normal for anchors embedded in walls. The minimum wall thickness is 175mm.

Moment Connections
The design procedure for moment connection assumes that the top or bottom of the wall is at least three times the effective embedment of the anchor (h_{eff}) measured from the centreline of the anchor.

Structural Analysis
The analysis of the structure should be based on the assumption of linear elastic behaviour. Plastic (yield line) methods and moment redistribution may not be used.

Shear Capacity
The shear capacity of the joint must be checked (see page 19). In tests with anchors at the top and bottom of the slab, no distress was evident that might be related to vertical shear in the plane of the face of the wall.

Seismic Applications
The anchors have not been tested in seismic conditions and therefore the design tables may overestimate the load capacity if used in seismic applications.

Design Resistance
Calculated with concrete partial material factor taken as $\gamma_c = 1.5$ and steel partial material factor taken as $\gamma_s = 1.15$.

Design Software
Our free design program is available to download from www.ancon.co.uk to simplify the specification of KSN Anchors. This easy-to-use interactive software enables calculations for moment connections and tension only applications.
Anchor Selection Examples

Design examples for KSN top anchor with standard timber carrier:

A) Load condition: Direct tensile load

- **Wall depth:** 225mm
- **Wall concrete:** C32/40
- **Tension applied:** 175kN/m
- **Slab main reinforcement spacing:** 200mm c/c
- **Assuming anchors at 200mm c/c:**

 \[N_{Ed} = 175 \times 0.200 = 35kN \text{ per anchor} \]

 From table page 10, anchors suitable for 225mm thick wall and 35kN load.

 - **KSN12S @ 200mm c/c** Anchor design resistance \(R_d = 37.4kN \)
 - **KSN12M @ 200mm c/c** Anchor design resistance \(R_d = 41.8kN \)
 - **KSN16S @ 200mm c/c** Anchor design resistance \(R_d = 39.4kN \)
 - **KSN16M @ 200mm c/c** Anchor design resistance \(R_d = 43.0kN \)
 - **KSN20S @ 200mm c/c** Anchor design resistance \(R_d = 43.0kN \)

 The values in the table are not in bold which means that the anchors are limited by the concrete design resistance.

 Where the anchor capacity is limited by the concrete resistance, we recommend the use of secondary wall reinforcement when the anchor head does not reach the wall back reinforcement (refer to page 17).

 From page 17: To prevent non ductile failure without additional wall reinforcement, with wall thickness of 225mm <230mm choose KSN16M @ 200mm c/c Anchor design resistance \(N_{Ed} = 43 \text{ kN} > N_{Ed} = 35kN \). No additional reinforcement required.

B) Load condition: Moment connection

- **Wall depth:** 225mm
- **Wall concrete:** C32/40
- **Slab thickness:** 225mm
- **Cover to top reinforcement:** 25mm
- **Slab main reinforcement spacing:** 200mm c/c
- **Moment applied:** \(M_{Ed} = 60kN.m/m \)
- **Top anchor applied tension:**

 \[N_{Ed} = \frac{M_{Ed}}{z} = 330kN/m \]

 \[N_{Ed} = 330 \times 0.200 = 66kN \text{ per anchor.} \]

 From table page 12 to 14, anchors suitable for 225mm thick wall and 66kN load

 - **KSN16S @ 200mm c/c in 225mm slab** Anchor design resistance \(N_{Ed} = 85.9kN \)
 - **KSN16M @ 200mm c/c in 225mm slab** Anchor design resistance \(N_{Ed} = 87.4kN \)
 - **KSN20S @ 200mm c/c in 225mm slab** Anchor design resistance \(N_{Ed} = 104.5kN \)

 The KSN16S and KSN20S anchors are limited by the concrete design resistance (value not in bold in tables).

 The KSN16M is limited by the reinforcement design resistance (value in bold).

 Choose KSN16M @ 200mm c/c as the anchors are suitable for full elastic design without the need for additional reinforcement.

C) Load condition: Moment connection

- **Wall depth:** 240mm
- **Wall concrete:** C32/40
- **Slab thickness:** 250mm
- **Cover to top reinforcement:** 25mm
- **Slab main reinforcement spacing:** 200mm c/c
- **Moment applied:** \(M_{Ed} = 95kN.m/m \)
- **Top anchor applied tension:**

 \[N_{Ed} = \frac{M_{Ed}}{z} = 470kN/m \]

 \[N_{Ed} = 470 \times 0.200 = 94kN \text{ per anchor.} \]

 From table page 12 to 14, anchors suitable for 240mm wall and 94kN

 - **KSN20S @ 200mm c/c in 250mm slab** Anchor design resistance \(N_{Ed} = 103.8kN \)

 The KSN20S anchors are limited by the concrete design resistance (value not in bold in tables).

 Where the anchor capacity is limited by the concrete resistance, we recommend the use of secondary wall reinforcement when the anchor head does not reach the wall back reinforcement (refer to page 17).

 Actual wall thickness 240mm is greater than 220mm, recommended maximum thickness without additional reinforcement.

 Therefore provide 2Nr 10mm diameter links per anchor as secondary wall reinforcement to prevent non ductile failure.
Direct Tensile Concrete Design Resistance Loads

Single line of anchors in direct tension without moment:

KSN Anchors Flush with Concrete

<table>
<thead>
<tr>
<th>Anchor Ref.</th>
<th>Rebar Dia. (mm)</th>
<th>Rebar Length (mm)</th>
<th>Minimum Wall Thickness (mm)</th>
<th>Embedment Depth h_{eff} (mm)</th>
<th>Anchor - Direct Tensile Resistance Load N_{rd} (kN)</th>
<th>C32/40 Concrete at Various Horizontal Spacings (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSN12S</td>
<td>12</td>
<td>115</td>
<td>175</td>
<td>109</td>
<td>24.6</td>
<td>32.8 41.0 49.2 49.2 49.2 49.2 49.2 49.2</td>
</tr>
<tr>
<td>KSN12M</td>
<td>12</td>
<td>150</td>
<td>175</td>
<td>144</td>
<td>28.3</td>
<td>37.7 47.1 49.2 49.2 49.2 49.2 49.2 49.2</td>
</tr>
<tr>
<td>KSN16S</td>
<td>16</td>
<td>130</td>
<td>175</td>
<td>124</td>
<td>26.2</td>
<td>35.0 43.7 52.5 61.2 65.1 65.1 65.1</td>
</tr>
<tr>
<td>KSN16M</td>
<td>16</td>
<td>160</td>
<td>185</td>
<td>154</td>
<td>29.2</td>
<td>39.0 48.7 58.5 68.2 78.0</td>
</tr>
<tr>
<td>KSN16L</td>
<td>16</td>
<td>190</td>
<td>215</td>
<td>184</td>
<td>32.0</td>
<td>42.6 53.9 63.9 74.6 85.3 87.4</td>
</tr>
<tr>
<td>KSN20S</td>
<td>20</td>
<td>150</td>
<td>175</td>
<td>144</td>
<td>28.3</td>
<td>37.7 47.1 56.6 66.0 75.4 81.5</td>
</tr>
<tr>
<td>KSN20M</td>
<td>20</td>
<td>190</td>
<td>215</td>
<td>184</td>
<td>32.0</td>
<td>42.6 53.9 63.9 74.6 85.3 85.3 85.3 95.9</td>
</tr>
<tr>
<td>KSN20L</td>
<td>20</td>
<td>230</td>
<td>255</td>
<td>224</td>
<td>35.3</td>
<td>47.0 58.8 70.6 82.3 94.1 105.8</td>
</tr>
</tbody>
</table>

KSN Anchors with Timber Carrier (Anchor Inset 33mm from Face of Concrete)

<table>
<thead>
<tr>
<th>Anchor Ref.</th>
<th>Rebar Dia. (mm)</th>
<th>Rebar Length (mm)</th>
<th>Minimum Wall Thickness (mm)</th>
<th>Embedment Depth h_{eff} (mm)</th>
<th>Anchor - Direct Tensile Resistance Load N_{rd} (kN)</th>
<th>C32/40 Concrete at Various Horizontal Spacings (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSN12S</td>
<td>12</td>
<td>115</td>
<td>175</td>
<td>142</td>
<td>28.1</td>
<td>37.4 46.8 49.2 49.2 49.2 49.2 49.2 49.2</td>
</tr>
<tr>
<td>KSN12M</td>
<td>12</td>
<td>150</td>
<td>210</td>
<td>177</td>
<td>31.4</td>
<td>41.8 49.2 49.2 49.2 49.2 49.2 49.2 49.2</td>
</tr>
<tr>
<td>KSN16S</td>
<td>16</td>
<td>130</td>
<td>190</td>
<td>157</td>
<td>29.5</td>
<td>39.4 49.2 59.1 68.9 78.8 87.4</td>
</tr>
<tr>
<td>KSN16M</td>
<td>16</td>
<td>160</td>
<td>220</td>
<td>187</td>
<td>32.2</td>
<td>43.0 53.7 64.5 75.2 86.0</td>
</tr>
<tr>
<td>KSN16L</td>
<td>16</td>
<td>190</td>
<td>250</td>
<td>217</td>
<td>34.7</td>
<td>46.3 57.9 69.4 81.0 87.4 87.4</td>
</tr>
<tr>
<td>KSN20S</td>
<td>20</td>
<td>150</td>
<td>210</td>
<td>177</td>
<td>31.4</td>
<td>41.8 52.3 62.7 73.2 83.6 94.1</td>
</tr>
<tr>
<td>KSN20M</td>
<td>20</td>
<td>190</td>
<td>250</td>
<td>217</td>
<td>34.7</td>
<td>46.3 57.9 69.4 81.0 92.6 104.2</td>
</tr>
<tr>
<td>KSN20L</td>
<td>20</td>
<td>230</td>
<td>290</td>
<td>257</td>
<td>37.8</td>
<td>50.4 63.0 75.6 88.2 100.8 113.4</td>
</tr>
</tbody>
</table>

Notes:
- All edges assumed to be at least 1.5 x h_{eff} from anchor centreline.
- **Bold** figures indicate performance equal or greater than reinforcement design resistance.

Tel: +44 (0) 114 275 5224 www.ancon.co.uk
Double Line of Identical Anchors in Direct Tension Without Moment:

KSN Anchors Flush with Concrete

<table>
<thead>
<tr>
<th>Anchor Ref.</th>
<th>Rebar Dia. (mm)</th>
<th>Anchor Length (mm)</th>
<th>Minimum Wall Thickness (mm)</th>
<th>Embedment Depth h_{eff} (mm)</th>
<th>Anchor - Direct Tensile Resistance Load N_{Rd} (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct Tensile Resistance Load N_{Rd} (kN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>KSN12S</td>
<td>12</td>
<td>115</td>
<td>175</td>
<td>109</td>
<td>200</td>
</tr>
<tr>
<td>KSN12M</td>
<td>12</td>
<td>150</td>
<td>175</td>
<td>144</td>
<td>200</td>
</tr>
<tr>
<td>KSN16S</td>
<td>16</td>
<td>130</td>
<td>175</td>
<td>124</td>
<td>200</td>
</tr>
<tr>
<td>KSN16M</td>
<td>16</td>
<td>160</td>
<td>185</td>
<td>154</td>
<td>200</td>
</tr>
<tr>
<td>KSN16L</td>
<td>16</td>
<td>190</td>
<td>215</td>
<td>184</td>
<td>200</td>
</tr>
<tr>
<td>KSN20S</td>
<td>20</td>
<td>150</td>
<td>175</td>
<td>144</td>
<td>200</td>
</tr>
<tr>
<td>KSN20M</td>
<td>20</td>
<td>190</td>
<td>215</td>
<td>184</td>
<td>200</td>
</tr>
<tr>
<td>KSN20L</td>
<td>20</td>
<td>230</td>
<td>255</td>
<td>224</td>
<td>200</td>
</tr>
</tbody>
</table>

KSN Anchors with Timber Carrier
(Anchor Inset 33mm from Face of Concrete)

<table>
<thead>
<tr>
<th>Anchor Ref.</th>
<th>Rebar Dia. (mm)</th>
<th>Anchor Length (mm)</th>
<th>Minimum Wall Thickness (mm)</th>
<th>Embedment Depth h_{eff} (mm)</th>
<th>Anchor - Direct Tensile Resistance Load N_{Rd} (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct Tensile Resistance Load N_{Rd} (kN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>KSN12S</td>
<td>12</td>
<td>115</td>
<td>175</td>
<td>142</td>
<td>200</td>
</tr>
<tr>
<td>KSN12M</td>
<td>12</td>
<td>150</td>
<td>210</td>
<td>177</td>
<td>200</td>
</tr>
<tr>
<td>KSN16S</td>
<td>16</td>
<td>130</td>
<td>190</td>
<td>157</td>
<td>200</td>
</tr>
<tr>
<td>KSN16M</td>
<td>16</td>
<td>160</td>
<td>220</td>
<td>187</td>
<td>200</td>
</tr>
<tr>
<td>KSN16L</td>
<td>16</td>
<td>190</td>
<td>250</td>
<td>217</td>
<td>200</td>
</tr>
<tr>
<td>KSN20S</td>
<td>20</td>
<td>150</td>
<td>210</td>
<td>177</td>
<td>200</td>
</tr>
<tr>
<td>KSN20M</td>
<td>20</td>
<td>190</td>
<td>250</td>
<td>217</td>
<td>200</td>
</tr>
<tr>
<td>KSN20L</td>
<td>20</td>
<td>230</td>
<td>290</td>
<td>257</td>
<td>200</td>
</tr>
</tbody>
</table>

Notes: All edges assumed to be at least 1.5 x h_{eff} from anchor centreline. Bold figures indicate performance equal or greater than reinforcement design resistance.
Tensile concrete design resistance loads in wall-to-slab connections:

KSN Anchors with Timber Carrier (Anchor Inset 33mm from Face of Concrete) Moment Connection - Slab Top Main Steel Reinforcement 25mm Cover

<table>
<thead>
<tr>
<th>Rebar Dia. (mm)</th>
<th>Anchor Length (mm)</th>
<th>Minimum Wall Thickness (mm)</th>
<th>Embedment Depth h_{eff} (mm)</th>
<th>Slab Depth (mm)</th>
<th>Anchor - Direct Tensile Design Resistance Load N_{rd} (kN)</th>
<th>C32/40 Concrete at Various Spacings Horizontal Spacing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>175</td>
</tr>
<tr>
<td>KSN Anchor KSN12S</td>
<td>12</td>
<td>115</td>
<td>175</td>
<td>142</td>
<td>175</td>
<td>49.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>49.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225</td>
<td>49.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>49.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>275</td>
<td>49.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>49.2</td>
</tr>
<tr>
<td>KSN Anchor KSN12M</td>
<td>12</td>
<td>150</td>
<td>210</td>
<td>177</td>
<td>175</td>
<td>49.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>49.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225</td>
<td>49.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>49.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>275</td>
<td>49.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>49.2</td>
</tr>
</tbody>
</table>

Notes: Refer to key design considerations on page 8. In addition, the tables assume no close edges and a cover to the top and bottom reinforcement connecting to the anchor of 25mm. For other cover, please contact Leviat. **Bold** figures indicate performance equal to or greater than reinforcement design resistance. If not bold, anchor resistance is limited by the concrete design resistance and we recommend the use of secondary wall reinforcement (see page 17).

For bottom anchorage options, see pages 7 and 16.
KSN Anchors with Timber Carrier (Anchor Inset 33mm from Face of Concrete)

Moment Connection - Slab Top Main Steel Reinforcement 25mm Cover

<table>
<thead>
<tr>
<th>Rebar Dia. (mm)</th>
<th>Anchor Length (mm)</th>
<th>Minimum Wall Thickness (mm)</th>
<th>Embedment Depth h_{eff} (mm)</th>
<th>Slab Depth (mm)</th>
<th>Anchor - Direct Tensile Design Resistance Load N_{rd} (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C32/40 Concrete at Various Spacings Horizontal Spacing (mm)</td>
</tr>
<tr>
<td>KSN Anchor KSN16S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150 175 200 225 250 275 300</td>
</tr>
<tr>
<td>16</td>
<td>130</td>
<td>190</td>
<td>157</td>
<td></td>
<td>175 73.8 86.1 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 73.8 86.1 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225 73.8 85.9 86.9 85.9 85.9 85.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250 72.8 72.8 72.8 72.8 72.8 72.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>275 62.4 62.4 62.4 62.4 62.4 62.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300 54.0 54.0 54.0 54.0 54.0 54.1</td>
</tr>
<tr>
<td>KSN Anchor KSN16M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 80.6 87.4 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td>16</td>
<td>160</td>
<td>220</td>
<td>187</td>
<td></td>
<td>200 80.6 87.4 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225 80.6 87.4 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250 80.6 87.4 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>275 80.6 87.4 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300 80.6 87.4 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td>KSN Anchor KSN16L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 86.8 87.4 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td>16</td>
<td>190</td>
<td>250</td>
<td>217</td>
<td></td>
<td>200 86.8 87.4 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225 86.8 87.4 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250 86.8 87.4 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>275 86.8 87.4 87.4 87.4 87.4 87.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300 86.8 87.4 87.4 87.4 87.4 87.4</td>
</tr>
</tbody>
</table>

Notes:
- Refer to key design considerations on page 8. In addition, the tables assume no close edges and a cover to the top and bottom reinforcement connecting to the anchor of 25mm. For other cover, please contact Leviat. **Bold** figures indicate performance equal to or greater than reinforcement design resistance. If not bold, anchor resistance is limited by the concrete design resistance and we recommend the use of secondary wall reinforcement (see page 17).
- Design Example B. See page 9.

For bottom anchorage options, see pages 7 and 16.
Ancon KSN Anchors

KSN Anchors with Timber Carrier (Anchor Inset 33mm from Face of Concrete)

Moment Connection - Slab Top Main Steel Reinforcement 25mm Cover

<table>
<thead>
<tr>
<th>Rebar Dia. (mm)</th>
<th>Anchor Length (mm)</th>
<th>Minimum Wall Thickness (mm)</th>
<th>Embedment Depth h_{eff} (mm)</th>
<th>Slab Depth (mm)</th>
<th>Anchor - Direct Tensile Design Resistance Load N_{RD} (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C32/40 Concrete at Various Spacings (mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Horizontal Spacing</td>
</tr>
</tbody>
</table>

- **KSN Anchor KSN20S**
 - 20: 150, 210, 177
 - 150: 175, 94.5, 101.3, 115.7, 130.2, 136.6, 136.6, 136.6
 - 175: 91.5, 104.5, 117.6, 130.7
 - 200: 78.4, 91.5, 104.5, 117.6, 130.7
 - 225: 78.4, 91.5, 104.5, 117.6, 121.8, 121.8
 - 250: 78.4, 91.5, 103.8, 103.8, 103.8
 - 275: 78.4, 89.5, 89.5, 89.5, 89.5
 - 300: 78.4, 89.5, 89.5, 89.5

- **KSN Anchor KSN20M**
 - 20: 190, 250, 217
 - 190: 175, 86.8, 101.3, 115.7, 130.2, 136.6, 136.6, 136.6
 - 200: 94.5, 101.3, 115.7, 130.2, 136.6, 136.6
 - 225: 94.5, 101.3, 115.7, 130.2
 - 250: 94.5, 101.3, 115.7
 - 275: 94.5, 101.3
 - 300: 94.5, 101.3

- **KSN Anchor KSN20L**
 - 20: 230, 290, 257
 - 230: 175, 94.5, 110.2, 126.0, 136.6, 136.6
 - 250: 94.5, 110.2, 126.0
 - 275: 94.5, 110.2
 - 300: 94.5

Notes: Refer to key design considerations on page 8. In addition, the tables assume no close edges and a cover to the top and bottom reinforcement connecting to the anchor of 25mm. For other cover, please contact Leviat. **Bold** figures indicate performance equal to or greater than reinforcement design resistance. If not bold, anchor resistance is limited by the concrete design resistance and we recommend the use of secondary wall reinforcement (see page 17).

Design Example C: See page 9
Reinforcement Details
Correct detailing of reinforcement in accordance with appropriate design codes and the recommendations provided here will ensure Ancon KSN Anchors attain the designed performance.

Top and Bottom Slab Anchor Connection

Wall Edge Reinforcement Details

Wall-Part Edge Section

Wall-Part Edge Elevation
Bottom Anchor Design Guidance

In the moment connection configuration, the tension at the joint is resisted by the top anchor and the compression by the concrete. However, part of the span bottom reinforcement needs to be anchored in the wall according to BS EN 1992-1-1 (Eurocode 2) Clause 9.3.1.2. This anchorage of bottom reinforcement may be provided using KSN Anchors, an Ancon Eazistrip reinforcement continuity system or an Ancon Coupler Box.

The minimum bottom anchors recommended, based on our test programme, are KSN12S at the same spacing as the top anchors. The Engineer shall check that the tension capacity provided satisfies BS EN 1992-1-1 Clause 9.3.1.2 and upgrade the anchor size if necessary using the tension only table of this brochure (page 10) to check anchorage provided.

Example of bottom anchor design

Assumptions:
- Top anchors @ 200mm/c,
- Slab is 200mm thick with 25mm cover top and bottom,
- Simply supported slab designed for nominal moment at the joint,
- Span reinforcement 16mm diameter @ 200mm/c = 1005 mm/m
- Moment at support is 60kN.m and slab design gives z = 156mm.
- Shear is \(V_{Ed} = 30 \text{kN/m} \)

From EC2 clause 9.3.1.2, minimum area of reinforcement to be anchored at support is 50% of span reinforcement, anchorage tension load to be provided by \(F = V_{Ed} \cdot d/z \) according to clause 9.2.1.4.

Assume KSN12S bottom anchors at same spacing as top anchors = 200mm:
- Area provided is 565mm² > 1005/2 = 503mm²
- Bottom reinforcement anchorage tension required is \(F = V_{Ed} \cdot d/z = 30 \times 169/156 = 32.5 \text{kN} \)
- Tension resistance provided by KSN12S anchors @ 200mm/c = 37.4kN from tension table (page 10). KSN12S anchors at 200mm/c are satisfactory for bottom reinforcement anchorage.

Other bottom anchorage options are an Eazistrip system and an Ancon Coupler Box.

KSN Anchor System being used with an Eazistrip System

Wall / Slab Section - KSN Anchors at top and bottom

Wall / Slab Section - KSN Anchor at Top / Eazistrip System on bottom

Wall / Slab Section - KSN Anchor at Top / Coupler Box on bottom
Guidance Regarding Ductility Requirement

The design of slab-wall connections should not be made in isolation but should be as part of a structural system. Ductility requirements of such a connection will depend on the robustness requirements of the structure of which it is part and the strategy chosen to achieve global robustness.

In the UK, the Building Regulations for England and Wales, for Scotland and for Northern Ireland all require buildings to be designed so that in the event of an accident the structure will not suffer collapse to an extent disproportionate to the cause.

Similarly, BS EN 1990 and BS EN 1991-1-7 (Eurocode 0 clause 2.1 and Eurocode 1 Part 1-7 clause 3) describe the necessity for the design to take into account accidental situations whether identified (clause 3.2) or unspecified (clause 3.3), and to mitigate the associated risk. Several possible strategies are proposed; one of them is the provision of sufficient robustness for the structure by ensuring that structural members and materials have sufficient ductility, and are capable of absorbing significant strain energy without rupture [3.2 (3)]. If such ductility at the slab-wall connection is required to participate in the global robustness of the structure, one approach to comply with this requirement is the provision of additional wall reinforcement to prevent non-ductile failure of the anchor under accidental load.

This secondary reinforcement can be in the form of transverse links to be placed above and below the anchor in tension.

Proposed details are shown here.

<table>
<thead>
<tr>
<th>Anchor Ref.</th>
<th>Bar Diameter (mm)</th>
<th>Anchor Length (mm)</th>
<th>Wall Thickness Above Which Secondary Wall Reinforcement Required* (mm)</th>
<th>Secondary Wall Reinforcement Requirement, 2 Links per Anchor. Link Diameter (mm)</th>
<th>Maximum Dimension A (mm)</th>
<th>Maximum Dimension B (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSN12S</td>
<td>12</td>
<td>115</td>
<td>185</td>
<td>8</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>KSN12M</td>
<td>12</td>
<td>150</td>
<td>220</td>
<td>8</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>KSN16S</td>
<td>16</td>
<td>130</td>
<td>200</td>
<td>8</td>
<td>120</td>
<td>55</td>
</tr>
<tr>
<td>KSN16M</td>
<td>16</td>
<td>160</td>
<td>230</td>
<td>8</td>
<td>120</td>
<td>55</td>
</tr>
<tr>
<td>KSN16L</td>
<td>16</td>
<td>190</td>
<td>260</td>
<td>8</td>
<td>120</td>
<td>55</td>
</tr>
<tr>
<td>KSN20S</td>
<td>20</td>
<td>150</td>
<td>220</td>
<td>10</td>
<td>135</td>
<td>60</td>
</tr>
<tr>
<td>KSN20M</td>
<td>20</td>
<td>190</td>
<td>260</td>
<td>10</td>
<td>135</td>
<td>60</td>
</tr>
<tr>
<td>KSN20L</td>
<td>20</td>
<td>230</td>
<td>300</td>
<td>10</td>
<td>135</td>
<td>60</td>
</tr>
</tbody>
</table>

*Where the standard 33mm timber anchor carrier is used.
KSN Corner Guidance

KSN Anchors may be used to connect slabs to walls at corners as long as certain conditions are met.

Inside Corner

Recommendations:
- Additional U-shaped rebars are to be provided above and below the corner anchors
- Careful attention to detailing of the anchors at corner locations is required to avoid the possibility of a clash of the continuity bars

Re-entrant Corner

Recommendations:
- Additional U-shaped rebars are to be provided above and below the corner anchors
- For high moments a special detail may be required, for example links and diagonal bars (shown red), as recommended in BS EN 1992-1-1 Annex J and UK national annex
- Anchors at the re-entrant corner will have to resist higher loads than the current anchors due to the larger area of slab supported and therefore need to be designed for the specific loads applied to them
Guidance on Shear Checks

The shear capacity of the joint (vertical shear at the interface and horizontal shear in the wall) must be checked by the designer. The anchor carrier is creating a shear key for the wall-to-slab connection that complies with figure 6.9 of BS EN 1992:1-1 (Eurocode 2) for indented construction joint. Tests undertaken with top and bottom anchors have shown no sign of distress due to shear at the interface, however suitability must be checked by the designer. The effective wall depth to be used in the calculation of the horizontal shear resistance is limited to 175mm or the anchor embedment, whichever is the greater.

The following shear checks at the joint need to be undertaken:

• The shear on the vertical interface between the end of the slab and the face of the wall (1):

See Table below for indicative capacity of the shear keys for one or two lines of KSN Anchors using Ancon standard timber carrier. For higher shear load or different carrier please contact us.

Shear key capacity according to EC2 of two lines of anchors on the vertical interface between the end of the slab and the face of the wall in kN/m for different concrete grades based on 69mm x 33mm timber carrier

<table>
<thead>
<tr>
<th>Concrete Grade</th>
<th>C32/40</th>
<th>C35/45</th>
<th>C40/50</th>
<th>C45/55</th>
<th>C50/60</th>
</tr>
</thead>
<tbody>
<tr>
<td>C32/40</td>
<td>96.6</td>
<td>101.2</td>
<td>115.0</td>
<td>124.2</td>
<td>133.4</td>
</tr>
</tbody>
</table>

Shear key capacity according to EC2 of one line of anchors on the vertical interface between the end of the slab and the face of the wall in kN/m for different concrete grades based on 69mm x 33mm timber carrier

<table>
<thead>
<tr>
<th>Concrete Grade</th>
<th>C32/40</th>
<th>C35/45</th>
<th>C40/50</th>
<th>C45/55</th>
<th>C50/60</th>
</tr>
</thead>
<tbody>
<tr>
<td>C32/40</td>
<td>48.3</td>
<td>50.6</td>
<td>57.5</td>
<td>52.1</td>
<td>66.7</td>
</tr>
</tbody>
</table>

• The horizontal shear in the wall within the depth of the slab. The horizontal shear in the wall shall be checked by the Engineer using EN 1992-1-1 clause 6.2.2 Members not requiring design shear reinforcement of EC2 taking into account the reduction factor $\beta = \frac{a_v}{(2d)}$ indicated in 6.2.2 (6). The applied joint shear $V_{Ed,jt}$ should be calculated by taking into account any other shear forces applied to the wall; it will depend on the wall height.

The wall shear resistance $V_{Rd,c}$ depends on the wall reinforcement and is defined by:

$$V_{Rd,c} = C_{Rd,c} \left(\frac{f_{ck}}{0.18/\gamma_c} \right)^{0.5} \frac{b_w d_w}{\beta} \left(1 + \frac{k}{200d_w^{0.5}} \right) \leq 2.0$$

with $C_{Rd,c} = 0.18/\gamma_c = 0.12$ from UK National Annex

where f_{ck} is the characteristic compressive cylinder strength of concrete at 28 days

$k = 0.15$ from UK National Annex

$\alpha_{sp} = N_{sp}/A_c < 0.2f_{cd}$ with N_{sp} compression force applied to the cross section and A_c the area of concrete of the cross section.

b_w is the wall width resisting the shear load and $d_w = \max(h_{eff}, 175\text{mm})$, wall effective depth

$\beta = \frac{a_v}{(2d_w)}$ with a_v the shear span of the joint equal to the distance between the slab neutral surface and the edge of the anchor head

p_h is the projection of anchor head (see adjacent table for details)

$V_{min} = 0.035 f_{cd}^{0.5}$ from UK National Annex

$v = 0.6 \left(1 - f_{cd}/250 \right)$

f_{cd} is the design value of the concrete compressive strength

s is the depth of the concrete stress block

Contact Leviat for a step by step design example.
Installation Guidance
Reinforcement continuity systems contribute to the stability of a structure and therefore it is essential that the correct installation procedures are followed. Brief installation guidance is given here. A more detailed installation guide is issued to site with the system.

Prior to Installation
Before installation, any loose anchors should be tightened to the timber carrier to ensure that the anchors will not move during concreting. Normal handling precautions to avoid physical injury apply and personal protection equipment should be worn.

A formwork release agent should be applied to the timber strip and any spillage must be removed from the anchors. The omission of the release agent will prevent the easy removal of the timber strip at a later stage and if the timber strip cannot be completely removed, the capacity of the joint may be compromised.

The timber carrier supporting the anchors is positioned against the formwork at the required location of the adjoining slab, orientated to the instructions on the label which indicates that the coloured side should face up. The timber is fixed to the formwork with nails. It is important that the strip is set to the correct position within tolerance, is the right way up and fixed to prevent any movement during concreting.

The KSN anchors are to be used only with Bartec Plus continuation bars provided by us. The Bartec Plus continuation bar thread should be checked to be free of any dirt and be positioned at the anchor location and rotated to fit into the anchor thread. The connection should then be tightened by using a hand wrench. No torqueing is required. After tightening, the exposed thread length should be no more than 2-4mm for sizes KSN12 and KSN20, and no more than 10mm for size KSN16.

Other wall reinforcement should be installed to the Engineer’s details, based on our recommendations. The concrete is then cast and once it has reached sufficient strength, the formwork is removed to reveal the face of the timber strip with the protective tape.

When installation of the continuation bars is required, the tape is removed to reveal the socket head cap screws which can be unscrewed using the corresponding Allen key (supplied with each order). Three M10 tee nuts have been inserted in each timber strip in order to allow for the use of M10 studs/bolts to help push the first timber strip out.

Slab reinforcement should be installed to the Engineers details. The slab is cast to complete the application.
Installation Tolerances
In order to ensure adequate cover to the continuation bar and to comply with the design, it is important that the timber anchor carrier is set to the correct position, the right way up and fixed to prevent any movement during concreting. The carrier’s installation tolerances are shown below and these tolerances are not cumulative.

Tools required for installation:
- KSN 12 - 10mm A/F Allen Key / Hex Head Wrench
- KSN 16 - 12mm A/F Allen Key / Hex Head Wrench
- KSN 20 - 14mm A/F Allen Key / Hex Head Wrench
- M10 Stud/bolt to push timber away from concrete
- Hand Wrench to suit continuation bar diameter

Other requirement:
- Formwork release agent

Vertical Transverse Section Alignment of Anchor
Side View

<table>
<thead>
<tr>
<th>Length of Continuation Bar (mm)</th>
<th>Deviation d</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>+/- 2mm</td>
</tr>
<tr>
<td>1000</td>
<td>+/- 3mm</td>
</tr>
<tr>
<td>1500</td>
<td>+/- 5mm</td>
</tr>
</tbody>
</table>

Horizontal Transverse Section Alignment of Anchor
Plan View

<table>
<thead>
<tr>
<th>Length of Continuation Bar (mm)</th>
<th>Deviation d</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>+/- 10mm</td>
</tr>
<tr>
<td>1000</td>
<td>+/- 12mm</td>
</tr>
<tr>
<td>1500</td>
<td>+/- 20mm</td>
</tr>
</tbody>
</table>
Guidance for cutting standard length anchor carrier

In some instances, at the end of a run of anchors for example, a non-standard carrier length may be required. In order to achieve this, the standard timber carrier may be cut to suit, under the following conditions:

- Anchor carriers are to be installed end to end without any gaps between them at all locations
- The specified spacing between anchors must never be exceeded
- The actual anchor spacing can be reduced to below the specified spacing but with a minimum of 150mm
- Minimum edge distance should be 100mm
Reinforcing Bar Couplers
The use of reinforcing bar couplers can provide significant advantages over lapped joints. Design and construction of the concrete can be simplified and the amount of reinforcement required can be reduced. The Ancon range includes Bartec Plus parallel threaded, TT tapered threaded and MBT mechanically bolted couplers.

Shear Load Connectors
Ancon DSD and ESD Shear Load Connectors are used to transfer shear across expansion and contraction joints in concrete. They are more effective at transferring load and allowing movement to take place than standard dowels, and can be used to eliminate double columns at structural movement joints in buildings. A Lockable Dowel is available for temporary movement joints in post-tensioned concrete.

CB Coupler Box
The Ancon CB Coupler Box is an alternative to using two rows of KSN Anchors to provide reinforcement continuity at slab-to-wall connections. Like KSN Anchors, it allows engineers to design connections without the traditional restrictions on bar length and bar diameter of re-bend/pull-out continuity systems and eliminates manual bar straightening on site. The CB Coupler Box is available in a standard range. Ancon CARES-approved CXL mechanical couplers are supplied fixed to a metal casing and, once the thread protection is removed, accept Ancon CXL parallel-threaded reinforcing bars.

KSN Anchor Box
Where slab-to-wall connections are subject to a combination of shear and tensile loads, Ancon KSN Anchors are used in a single row along the slab section centreline to provide an innovative, cost-effective fixing detail. In this instance, KSN Anchors are supplied fixed to a metal box that closely matches the slab thickness, creating a beneficial indent in the wall for the full height and length of the joint. We provide a four-step EC2-compliant design method for the Ancon KSN Anchor Box, independently verified by University of Sheffield, UK.

Shear Load Connectors
Ancon DSD and ESD Shear Load Connectors are used to transfer shear across expansion and contraction joints in concrete. They are more effective at transferring load and allowing movement to take place than standard dowels, and can be used to eliminate double columns at structural movement joints in buildings. A Lockable Dowel is available for temporary movement joints in post-tensioned concrete.

Punching Shear Reinforcement
Used within a slab to provide additional reinforcement around columns, Ancon Shearfix is the ideal solution to the design and construction problems associated with punching shear. This CARES-approved system consists of double-headed studs welded to flat rails, positioned around the column head or base. The shear load from the slab is transferred through the studs into the column.
Innovative engineered products and construction solutions that allow the industry to build safer, stronger and faster.
Worldwide contacts for Leviat:

Australia
Leviat
98 Kurrajong Avenue, Mount Druitt Sydney, NSW 2770
Tel: +61 - 2 8808 3100
Email: info.au@leviat.com

Austria
Leviat
Leonard-Bernstein-Str. 10
Saturn Tower, 1220 Wien
Tel: +43 - 1 - 259 8770
Email: info.at@leviat.com

Belgium
Leviat
Industrielaan 2
1740 Ternat
Tel: +32 - 2 - 582 29 45
Email: info.be@leviat.com

China
Leviat
Room 601 Tower D, Vantone Centre
No. A6 Chao Yang Men Wai Street
Chaoyang District
Beijing · P.R. China 100020
Tel: +86 - 10 5907 3200
Email: info.cn@leviat.com

Czech Republic
Leviat
Business Center Šafránkova
Šafránkova 1238/1
155 00 Praha 5
Tel: +420 - 311 - 690 060
Email: info.cz@leviat.com

Finland
Leviat
Vädersgatan 5
412 50 Göteborg / Sweden
Tel: +358 (0)10 6338781
Email: info.fi@leviat.com

France
Leviat
6, Rue de Cabanis
FR 31240 L’Union
Toulouse
Tel: +33 - 5 - 34 25 54 82
Email: info.fr@leviat.com

Germany
Leviat
Liebigstrasse 14
40764 Langenfeld
Tel: +49 - 2173 - 970 - 0
Email: info.de@leviat.com

India
Leviat
309, 3rd Floor, Orion Business Park
Ghodobunder Road, Kapurbawdi,
Thane West, Thane,
Maharashtra 400607
Tel: +91 - 22 2589 2032
Email: info.in@leviat.com

Italy
Leviat
Via F.Li Bronzetti 28
24124 Bergamo
Tel: +39 - 035 - 0760711
Email: info.it@leviat.com

Malaysia
Leviat
28 Jalan Anggerik Mokara 31/59
Kota Kemuning, 40460 Shah Alam
Selangor
Tel: +603 - 5122 4182
Email: info.my@leviat.com

Netherlands
Leviat
Oostermaat 3
7623 GS Borne
Tel: +31 - 74 - 267 14 49
Email: info.nl@leviat.com

New Zealand
Leviat
2/19 Nuttall Drive, Hillsborough,
Christchurch 8022
Tel: +64 - 3 376 5205
Email: info.nz@leviat.com

Norway
Leviat
Vestre Svanholmen 5
4313 Sandnes
Tel: +47 - 51 82 34 00
Email: info.no@leviat.com

Philippines
Leviat
2933 Regus, Joy Nostalg, ADB Avenue
Ortigas Center
Pasig City
Tel: +63 - 2 7957 6381
Email: info.ph@leviat.com

Poland
Leviat
UL. Obornicka 287
60-691 Poznań
Tel: +48 - 61 - 622 14 14
Email: info.pl@leviat.com

Singapore
Leviat
14 Benoi Crescent
Singapore 629977
Tel: +65 - 6266 6802
Email: info.sg@leviat.com

Spain
Leviat
Poligono Industrial Santa Ana
c/ Ignacio Zuloaga, 20
28522 Rivas-Vaciamadrid
Tel: +34 - 91 632 18 40
Email: info.es@leviat.com

Sweden
Leviat
Vädersgatan 5
412 50 Göteborg
Tel: +46 - 31 - 98 58 00
Email: info.se@leviat.com

Switzerland
Leviat
Grenzstrasse 24
3250 Lyss
Tel: +41 - 31 750 3030
Email: info.ch@leviat.com

United Arab Emirates
Leviat
RA08 TB02, PO Box 17225
JAFZA, Jebel Ali, Dubai
Tel: +971 (0)4 883 4346
Email: info.ae@leviat.com

United Kingdom
Leviat
President Way, President Park, Sheffield, S4 7UR
Tel: +44 - 114 275 5224
Email: info.uk@leviat.com

United States of America
Leviat
6467 S Falkenburg Rd.
Riverview, FL 33578
Tel: (800) 423-9140
Email: info.us@leviat.us

For countries not listed
Email: info@leviat.com

Notes regarding this catalogue
© Protected by copyright. The construction applications and details provided in this publication are indicative only. In every case, project working details should be entrusted to appropriately qualified and experienced persons. Whilst every care has been exercised in the preparation of this publication to ensure that any advice, recommendations or information is accurate, no liability or responsibility of any kind is accepted by Leviat for inaccuracies or printing errors. Technical and design changes are reserved. With a policy of continuous product development, Leviat reserves the right to modify product design and specification at any time.
For more information on these products, contact:

Leviat
President Way
President Park
Sheffield, S4 7UR
United Kingdom
Tel: +44 (0) 114 275 5224
Fax: +44 (0) 114 276 8543
Email: info.ancon.uk@leviat.com

For sales and technical enquiries:
Email: reinforcement.uk@leviat.com
Ancon.co.uk
Leviat.com